精英家教网 > 初中数学 > 题目详情

【题目】在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(),…,都是梦之点,显然梦之点有无数个.

(1)若点 P(2,b)是反比例函数 (n 为常数,n ≠ 0) 的图象上的梦之点,求这个反比例函数解析式;

(2)⊙O 的半径是

①求出⊙O上的所有梦之点的坐标;

②已知点 M(m,3),点 Q 是(1)中反比例函数 图象上异于点 P 的梦之点,过点Q 的直线 l y 轴交于点 A,∠OAQ=45°.若在⊙ O 上存在一点 N,使得直线 MN ∥ l MN ⊥ l,求出 m 的取值范围.

【答案】(1);(2)①⊙O上所有梦之点坐标是(1,1)或(-1,-1);②m的取值范围为-5≤m≤-11≤m≤5.

【解析】

(1)由梦之点的定义可求得P点坐标,再利用待定系数法可求得反比例函数解析式;(2)①设⊙O上的梦之点坐标为(a,a),由圆的半径,根据勾股定理可得到关于a的方程,可求得a的值,则可得梦之点的坐标;②分两种情况进行讨论:当MNy=-x+b时,m=b-3,当直线MN平移至与⊙O相切时,且切点在第三象限时,b取得最小值,当直线MN平移至与⊙O相切时,且切点在第一象限时,b取得最大值,据此可得m的取值范围为-5≤m≤-1;当直线MNy=x+b时,同理可得,m的取值范围为1≤m≤5.

(1) ∵P(2,b)是梦之点,∴b=2

∴P(2,2)

P(2,2) 代入 中得n=4

∴反比例函数解析式是

(2)①设O上梦之点坐标是()∴

=1=-1

O上所有梦之点坐标是(1,1)或(-1,-1)

②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)

由已知MN∥lMN⊥l

∴直线MNy=-x+by=x+b

MNy=-x+b时,m=b-3

由图可知,当直线MN平移至与O相切时,

且切点在第四象限时,b取得最小值,

此时MN 记为

其中 为切点,为直线与y轴的交点

∵△O 为等要直角三角形,

∴O= ∴O=2

∴b的最小值是-2,

∴m的最小值是-5

当直线MN平移至与O相切时,且切点在第二象限时,

b取得最大值,此时MN 记为

其中 为切点,为直线y轴的交点。

同理可得,b的最大值为2,m的最大值为-1.

∴m的取值范围为-5≤m≤-1.

当直线MNy=x+b时,

同理可得,m的取值范围为1≤m≤5,

综上所述,m的取值范围为-5≤m≤-11≤m≤5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的 1.5 倍,两人各加工 600 个这种零件,甲比乙少用 5 天.

1)求甲、乙两人每天各加工多少个这种零件?

2)已知甲、乙两人加工这种零件每天的加工费分别是 150 元和 120 元,现有 3000 个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,点E是边AD上动点,点F是边BC上动点,连接EF,把矩形ABCD沿直线EF折叠,点B恰好落在边AD上,记为点G;如图2,把矩形展开铺平,连接BEFG.

1)判断四边形BEGF的形状一定是   ,请证明你的结论;

2)若矩形边AB4BC8,直接写出四边形BEGF面积的最大值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=﹣x+6A、B两点,若反比例函数(x0)的图象与△ABC有公共点,则k的取值范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C是O上一点,过点C的直线交AB的延长线于点D,AEDC,垂足为E,F是AE与O的交点,AC平分BAE.

1求证:DE是O的切线;

2若AE=6,D=30°,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:如图1,在△ABC和△ADE中,AB=AC=AD=AE,当∠BAC+∠DAE=180° 时,我们称△ABC与△DAE互为“顶补等腰三角形”,△ABC的边BC上的高线AM叫做△ADE的“顶心距”,点A叫做“旋补中心”.

(1)特例感知:在图2,图3中,△ABC与△DAE互为“顶补等腰三角形”,AM是“顶心距”

①如图2,当∠BAC=90°时,AM与DE之间的数量关系为AM=   DE;

②如图3,当∠BAC=120°,ED=6时,AM的长为   

(2)猜想论证:

在图1中,当∠BAC为任意角时,猜想AM与DE之间的数量关系,并给予证明

(3)拓展应用

如图4,在四边形ABCD中,AD=AB,CD=BC,∠B=90°,∠A=60°,CA=,在四边ABCD的内部找到点P,使得△PAD与△PBC互为“顶补等腰三角形”并回答下列问题

①请在图中标出点P的位置,并描述出该点的位置为

②直接写出△PBC的“顶心距”的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形在平面直角坐标系中的位置如图所示,,AC=4,把平行四边形绕点逆时针方向旋转,使点落在轴上,则旋转后点的对应点的坐标为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,Px轴上的一动点,连接CP.

(1)直接写出OC=___________;

(2)如图1,当CP与⊙A相切时,求PO的长;

(3)如图2,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问当PO为何值时,△OCQ是等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系中,设一次函数的图象是直线.

1)如果把向下平移个单位后得到直线,求的值;

2)当直线过点和点时,且,求的取值范围;

3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.

查看答案和解析>>

同步练习册答案