精英家教网 > 初中数学 > 题目详情
已知,在平面直角坐标系中,反比例函数y=
k
x
(k≠0)的图象与一次函数y=x+b的图象交于A(-1,b-1)、B(-5,b-5)两点.
(1)求反比例函数与一次函数的解析式;
(2)设抛物线y=-x2+b′x+c(c>0)的顶点P在直线AB上,且PA:PB=1:3,求抛物线的解析式;
(3)把以上函数图象同步向右平移,使直线AB与两坐标轴所围成的三角形的面积等于2,求平移后的抛物线的解析式.
(1)把A(-1,b-1)、B(-5,b-5)两点代入y=
k
x
,得:
b-1=-k
b-5=-
k
5

解得:
k=-5
b=6

∴正比例函数解析式为:y=x+6,
反比例函数反比例函数解析式为:y=-
5
x


(2)∵直线AB为y=x+6,且A(-1,5),B(-5,1),
过点A,B分别作y轴、x轴的平行线,它们相交于点C(-1,1),
则AC=BC=4,
①P点在线段AB上时,作PEBC,交AC于E,作PDAC交BC于D,

PE
BC
=
PA
AB
PD
AC
=
PB
AB

PA
PB
=
1
3

PA
AB
=
1
4
PB
AB
=
3
4

∴PE=1,PD=3,
∴P(-2,4),
∴抛物线的解析式为:y=-(x-1) 2+4,
即y=-x 2-4x,
此时,c=0,不符合题意,舍去;
②当P点在线段BA的延长线上时,同理可得:P(1,7)
∴抛物线的解析式为:y=-(x-1) 2+7,
即y=-x 2+2x+6,
此时,c=6>0,符合题意,
∴由①、②可知,抛物线的解析式为:y=-x 2+2x+6;

(3)设平移后的直线解析式为:y=x+t,
它交x轴于点(-t,0),交y轴于点(0,t),
∴S=
1
2
×|-t|×|t|=2,
∴t=±2,
∴平移后的直线解析式为:y=x+2或y=x-2,
即图象向右平移了4个单位或8个单位,
此时的抛物线解析式为:y=-(x-1-4)2+7或y=-(x-1-8)2+7,
即y=-x 2+10x-18或y=-x 2+18x-74.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b与双曲线y=
4
x
在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4.
(1)求一次函数的解析式;
(2)根据图象指出不等式kx+b>
4
x
的解集;
(3)点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=kx+b(k≠0)的图象与x轴,y轴分别交于A、B两点,且与反比例函数y=
m
x
(m≠0)的图象的第一象限交于点C,CD垂直于x轴,垂足为D,若OA=OB=OD=1,求:
(1)求点A、B、D的坐标:A______,B______,D______;
(2)求一次函数的解析式:______;
(3)求反比例函数的解析式:______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,Rt△ABC在第一象限,∠BAC=90°,AB=AC=2,点A在直线y=x上,其中点A的横坐标为1,且ABx轴,ACy轴,若双曲线y=
k
x
(k≠0)与△ABC有交点,则k的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知点A在反比例函数y=
2
x
的图象上,点B,C分别在反比例函数y=
4
x
的图象上,且ABx轴,ACy轴,若AB=2AC,则点A的坐标为(  )
A.(1,2)B.(2,1)C.(
2
2
D.(3,
2
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

蓄电池的电压为定值,使用此电源时,电流I(A)是电阻R(Ω)的反比例函数,其图象如图所示,当R为10Ω时,电流I是(  )
A.3AB.3.6AC.4AD.6A

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读材料:
若a,b都是非负实数,则a+b≥2
ab
.当且仅当a=b时,“=”成立.
证明:∵(
a
-
b
2≥0,∴a-2
ab
+b≥0.
∴a+b≥2
ab
.当且仅当a=b时,“=”成立.
举例应用:
已知x>0,求函数y=2x+
2
x
的最小值.
解:y=2x+
2
x
2
2x•
2
x
=4.当且仅当2x=
2
x
,即x=1时,“=”成立.
当x=1时,函数取得最小值,y最小=4.
问题解决:
汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(
1
18
+
450
x2
)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升.
(1)求y关于x的函数关系式(写出自变量x的取值范围);
(2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数y=y1-y2,其中 y1与x成正比例,y2与x-2成反比例,且当x=1时,y=1;当x=3时,y=5.
求:(1)y与x的函数关系式;
(2)当x=-2时,y的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图y=-6x+6与坐标轴交于A、B两点,△ABC为等腰直角三角形,双曲线y=
k
x
(x<0)
过C点,则k的值是______.

查看答案和解析>>

同步练习册答案