精英家教网 > 初中数学 > 题目详情
(2005•扬州)为了配合数学课程改革,某县举行了初三年级“数学知识应用”竞赛(满分100分).为了解初三年级参赛的1万名学生竞赛成绩情况,现从中随机抽取部分学生的竞赛成绩作为一个样本,整理后分成5组,绘制出频数分布直方图.已知图中从左到右的第一、第二、第四、第五小组的频数分别是50,100,200,25,其中第二小组的频率是0.2.
(1)求第三小组的频数,并补全频数分布直方图;
(2)抽取的样本中,学生竞赛成绩的中位数落在第几小组?
(3)若成绩在90分以上(含90分)的学生获优胜奖,请你估计全县初三参赛学生中获优胜奖的人数.

【答案】分析:(1)总数是100÷0.2=500,所以第三组的频数是125,画图即可;
(2)根据中位数的求算方法可知中位数落在第三组;
(3)用样本来估计总体.
解答:解:
(1)样本容量=100÷2=500,则第三小组的频数=500-50-100-200-25=125,补图

(2)因为中位数是从小到大排列的第250,第251这两个数据和的平均数,
又因为落在前三小组的频数分别为50,100,125
所以抽取的样本中的中位数落在第三小组;

(3)因为10000×=500,
所以估计全县初三参赛学生中获优胜奖的有500人.
点评:主要考查了频率的计算方法和如何画频率分布折线图,还考查了中位数的确定方法和用样本估计总体的能力.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《数据收集与处理》(03)(解析版) 题型:解答题

(2005•扬州)为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:
组别分组频数频率
149.5~59.5600.12
259.5~69.51200.24
369.5~79.51800.36
479.5~89.5130c
589.5~99.5b0.02
合计a1.00
解答下列问题:
(1)在这个问题中,总体是______,样本容量a=______;
(2)第四小组的频率c=______;
(3)被抽取的学生成绩的中位数落在第几小组内?
(4)若成绩在90分以上(含90分)的学生获一等奖,请你估计全市获一等奖的人数.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《因式分解》(03)(解析版) 题型:解答题

(2005•扬州)为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.
(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;
(2)设第k所民办学校所得到的奖金为ak元(1≤k≤n),试用k、n和b表示ak(不必证明);
(3)比较ak和ak+1的大小(k=1,2,…,n-1),并解释此结果关于奖金分配原则的实际意义.

查看答案和解析>>

科目:初中数学 来源:2005年全国中考数学试题汇编《代数式》(05)(解析版) 题型:解答题

(2005•扬州)为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.
(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;
(2)设第k所民办学校所得到的奖金为ak元(1≤k≤n),试用k、n和b表示ak(不必证明);
(3)比较ak和ak+1的大小(k=1,2,…,n-1),并解释此结果关于奖金分配原则的实际意义.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省扬州市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•扬州)为进一步落实《中华人民共和国民办教育促进法》,某市教育局拿出了b元资金建立民办教育发展基金会,其中一部分作为奖金发给了n所民办学校.奖金分配方案如下:首先将n所民办学校按去年完成教育、教学工作业绩(假设工作业绩均不相同)从高到低,由1到n排序,第1所民办学校得奖金元,然后再将余额除以n发给第2所民办学校,按此方法将奖金逐一发给了n所民办学校.
(1)请用n、b分别表示第2所、第3所民办学校得到的奖金;
(2)设第k所民办学校所得到的奖金为ak元(1≤k≤n),试用k、n和b表示ak(不必证明);
(3)比较ak和ak+1的大小(k=1,2,…,n-1),并解释此结果关于奖金分配原则的实际意义.

查看答案和解析>>

科目:初中数学 来源:2005年江苏省扬州市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2005•扬州)为配和新课程的实施,某市举行了“应用与创新”知识竞赛,共有1万名学生参加了这次竞赛(满分100分,得分全为整数).为了解本次竞赛成绩情况,从中随机抽取了部分学生的竞赛成绩,进行统计,整理见下表:
组别分组频数频率
149.5~59.5600.12
259.5~69.51200.24
369.5~79.51800.36
479.5~89.5130c
589.5~99.5b0.02
合计a1.00
解答下列问题:
(1)在这个问题中,总体是______,样本容量a=______;
(2)第四小组的频率c=______;
(3)被抽取的学生成绩的中位数落在第几小组内?
(4)若成绩在90分以上(含90分)的学生获一等奖,请你估计全市获一等奖的人数.

查看答案和解析>>

同步练习册答案