精英家教网 > 初中数学 > 题目详情
2.不论k为何值,以点M(0,1)为圆心的圆与直线l:y=kx+5-3k总有公共点,则⊙M的面积的最小值为29π.

分析 先确定出直线l恒过点A(3,5),进而圆M的最小半径为AM,即可得出结论.

解答 解:∵直线l:y=kx+5-3k=k(x-3)+5,
∴直线l恒过点A(3,5),
∵不论k为何值,以点M(0,1)为圆心的圆与直线l:y=kx+5-3k总有公共点,
∴⊙M的半径最小为AM=$\sqrt{(3-1)^{2}+{5}^{2}}$=$\sqrt{29}$,
∴⊙M的面积的最小值为π×AM2=29π,
故答案为:29π

点评 此题是直线的圆的位置关系,主要考查了圆的面积,解本题的关键是判断出圆M的最小半径为AM的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.若一个正数的两个平方根分别是2a+1和a-4,则a的值是1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.数轴上有三点A、B、C,且A、B两点间的距离是4,B、C两点的距离是2,若点A表示的数是-2,则点C表示的数是-8或-4或0或4.(写出所有可能的结果)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.⊙O的半径为4,点P到圆心O的距离为d,如果点P在圆内,则d(  )
A.d<4B.d=4C.d>4D.0≤d<4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.在同样的条件下对某种小麦进行发芽试验,统计发芽种子数,获得频数及频率如下表:
试验种子数n(粒)155020050010003000
发芽频数m04451884769512850
发芽频率$\frac{m}{n}$00.80.90.940.9520.9510.95
由表估计该麦种的发芽概率是0.95.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.若线段c是线段a和b的比例中项,且a=2cm,b=8cm,则线段c的长是4cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在直线l上任取A,B,C三点,使得AB=4cm,BC=3cm,若点O是线段AC的中点,则线段OB的长度是0.5或3.5cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.新学年,学校要选拔新的学生会主席,学校对入围的甲、乙、丙三名候选人进行了三项测试,成绩如下表所示.根据实际需要,规定能力、技能、学业三项测试得分按5:3:2的比例确定个人的测试成绩.得分最高者被任命,此时乙将被任命为学生会主席.
 项目
 得分 
 能力 技能 学业
 甲 82 70 98
 乙 95 84 61
 丙 87 80 77

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,在△ABC中,添加一个条件:∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC,使△ABP∽△ACB.

查看答案和解析>>

同步练习册答案