精英家教网 > 初中数学 > 题目详情
精英家教网如图,在△ABC中,∠C=90°,D是BC边上一点,DE⊥AB于E,∠ADC=45°,若DE:AE=1:5,BE=3,求△ABD的面积.
分析:由已知条件可以证明△BED∽△BCA,然后根据其对应边成比例可将DE的长求出来,进而可求出AB的长,根据三角形的面积公式可求出结果.
解答:解:在△AED中,∵DE⊥AB于E,
又∵DE:AE=1;5,
∴设DE=x,则AE=5x,
由勾股定理,AD2=AE2+ED2=(5x)2+x2=26x2
∴AD=
26
x.
在△ADC中,∵∠C=90°,∠ADC=45°,
∴∠DAC=45°.
由勾股定理,AC2+DC2=AD2=26x2
∴AC=DC=
13
x.
在Rt△BED中,∵ED=x,BE=3,
由勾股定BD2=ED2+BE2=x2+32=x2+9,
∴BD=
x2+9

在Rt△BED和Rt△BCA中,
∵∠B是公共角,
∠BED=∠BCA=90°,
∴△BED∽△BCA,而AB=3+5x.
ED
AC
=
BD
BA

x
13
x
=
x2+9
3+5x

解关于x的方程3+5x=
13
x2+9

两边平方得:(3+5x)2=13•(x2+9),
化简得:2x2+5x-18=0,
即(x-1)(2x+9)=0,
∴x1=2 x2=-
9
2

∵x=ED>0,
∴x=ED=2,AE=5x=10.
∴AB=AE+BE=10+3=13.
∴S△ABD=
1
2
ED•AB=
1
2
×2×13=13.
点评:此题考查解直角三角形、直角三角形性质等知识,也考查逻辑推理能力和运算能力.此题比较难,综合性比较强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案