精英家教网 > 初中数学 > 题目详情

【题目】对于一个矩形ABCD及⊙M给出如下定义:在同一平面内,如果矩形ABCD的四个顶点到⊙M上一点的距离相等,那么称这个矩形ABCD是⊙M的“伴侣矩形”.如图,在平面直角坐标系xOy中,直线l:交x轴于点M,⊙M的半径为2,矩形ABCD沿直线运动(BD在直线l上),BD=2,AB∥y轴,当矩形ABCD是⊙M的“伴侣矩形”时,点C的坐标为

【答案】()或().

【解析】

试题分析:如图所示,矩形在这两个位置时就是⊙M的“伴侣矩形”,根据直线l:得:OM=,ON=3,由勾股定理得:MN==

①矩形在x轴下方时,分别过A、D作两轴的垂线AH、DG,由cos∠ABD=cos∠ONM=,∴,AB=,则AD=1,∵DG∥y轴,∴△MDG∽△MON,∴,∴,∴DG=,∴CG=+=,同理可得:,∴,∴DH=,∴C();

②矩形在x轴上方时,同理可得:C();

故答案为:()或().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一组数据5,4,2,5,6的中位数是(  )
A.5
B.4
C.2
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.求:

(1)∠BAE的度数;
(2)∠DAE的度数;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1 , 写出△ABC关于X轴对称的△A2B2C2的各点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列运算正确的是(
A.﹣a2?(﹣a3)=a6
B.(a23=a6
C.( 2=﹣a2﹣2a﹣1
D.(2a+1)0=1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC和△DEF中,AB=AC,DE=DF,∠A=∠D.

(1)求证:

(2)由(1)中的结论可知,等腰三角形ABC中,当顶角∠A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也就确定,我们把这个比值记作T(A),即T(A)==,如T(60°)=1.

①理解巩固:T(90°)= ,T(120°)= ,若α是等腰三角形的顶角,则T(α)的取值范围是

②学以致用:如图2,圆锥的母线长为9,底面直径PQ=8,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长(精确到0.1).

(参考数据:T(160°)≈1.97,T(80°)≈1.29,T(40°)≈0.68)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1000个零件中任意抽取100个检测,有2个不合格,估计这1000个零件中合格的零件约有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.

【探究证明】

(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;

(2)如图2,求证:∠OAB=∠OAE′.

【归纳猜想】

(3)图1、图2中的“叠弦角”的度数分别为

(4)图n中,“叠弦三角形” 等边三角形(填“是”或“不是”)

(5)图n中,“叠弦角”的度数为 (用含n的式子表示)

查看答案和解析>>

同步练习册答案