精英家教网 > 初中数学 > 题目详情
精英家教网已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值y相等;③4a+b=0;④当y=2时,x的值只能取0;⑤x=-1是关于x的方程ax2+bx+c=0的一个解.其中正确的有(  )
A、2个B、3个C、4个D、5个
分析:①由对称轴为x=-
b
2a
>0可以判定;
②由对称轴为x=
-1+5
2
=2,可以判定;
③由对称轴为x=-
b
2a
=2可以得4a+b=0,所以判定;
④由点(0,2)的对称点为(4,0),由此可以得到当y=2时,x的值能取0或4,由此判定;
⑤ax2+bx+c=0的解即是二次函数与x轴的交点的横坐标是-1或5,由此判定.
解答:解:①∵对称轴为x=-
b
2a
>0,
∴a、b异号,错误;
②∵对称轴为x=
-1+5
2
=2,
∴当x=1和x=3时,函数值y相等,正确;
③∵对称轴为x=-
b
2a
=2,
得4a+b=0,正确;
④∵点(0,2)的对称点为(4,0),
∴当y=2时,x的值能取0或4,错误;
⑤∵ax2+bx+c=0的解即是二次函数与x轴的交点的横坐标是-1或5,正确.
故选B.
点评:此题考查了二次函数的对称轴的求法和二次函数的对称性,还考查了点的坐标的求法.解题的关键是注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案