精英家教网 > 初中数学 > 题目详情
如图,AB为⊙O的直径,BC⊥AB,CP切⊙O于点P,连OC,交⊙O于N,交BP于E,连BN,AP.
(1)求证:BN平分∠PBC.
(2)连AC交BP于M,若AB=BC=4,求tan∠PAC的值.
分析:(1)连接OP,证OC垂直平分PB,求出∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,根据∠ONB=∠OBN求出∠NBP=∠NBC,即可得出答案;
(2)证△OEB∽△BEC,求出BE=2OE,CE=2BE=4OE,设OE=x,则CE=4x,过C作CQ⊥AP交AP延长线于Q,得出四边形QPEC是矩形,推出QC=PE=BE=2x,QP=CE=4x,AQ=6x,代入tan∠PAC=
CQ
AQ
求出即可.
解答:(1)证明:连接PO,
∵CB⊥AB,
∴CB是⊙O切线,
∵CP是⊙O切线,
∴PC=BC,
即C在PB垂直平分线上,
∵OP=OB,
∴O在PB的垂直平分线上,
∴OC⊥PB,PE=BE,
∴∠BEC=∠CBO=90°,
∴∠NBE+∠ENB=90°,∠CBN+∠NBO=90°,
∵ON=OB,
∴∠ONB=∠OBN,
∴∠NBP=∠NBC,
∴BN平分∠PBC.

(2)解:∵BE⊥OC,
∴∠OEB=∠CEB=∠OBC=90°,
∴∠OBE+∠EOB=90°,∠EBO+∠EBC=90°,
∴∠EOB=∠EBC,
∴△OEB∽△BEC,
OB
BC
=
OE
BE
=
BE
CE

∵OB=
1
2
AB=2,BC=4,
∴BE=2OE,CE=2BE=4OE,
设OE=x,则CE=4x,
∵PE=BE,AO=OB,
∴AP=2OE=2x,
过C作CQ⊥AP交AP延长线于Q,
则∠Q=∠QPE=∠PEC=90°,
∴四边形QPEC是矩形,
∴QC=PE=BE=2x,QP=CE=4x,
∴AQ=4x+2x=6x,
在Rt△AQC中,tan∠PAC=
CQ
AQ
=
2x
6x
=
1
3
点评:本题考查了切线的性质,矩形的性质和判定,解直角三角形,线段垂直平分线性质的应用,主要考查学生综合运用性质进行推理和计算的能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为
40m
40m

查看答案和解析>>

科目:初中数学 来源:江苏省张家港市2012年中考网上阅卷适应性考试数学试题 题型:013

如图,AB为⊙O的直甲径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中数学 来源:2008年福建省福州一中高中招生(面向福州以外)综合素质测试数学试卷(解析版) 题型:选择题

如图,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的长为( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步练习册答案