精英家教网 > 初中数学 > 题目详情
如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,在直线CD上有一点P.
(1)如果P点在C、D之间运动时,问∠PAC,∠APB,∠PBD有怎样的数量关系?请说明理由.(提示:过点P作PE∥l1
(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD之间的关系又是如何?
(1)∠APB=∠PAC+∠PBD;(2)∠PBD=∠PAC+∠APB,或∠PAC=∠PBD+∠APB.

试题分析:(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.
试题解析:(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.

理由如下:
过点P作PE∥l1
∵l1∥l2
∴PE∥l2∥l1
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;
(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.

理由如下:
∵l1∥l2
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.
如图③,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.

理由如下:
∵l1∥l2
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,;图②中,.图③是该同学所做的一个实验:他将△的直角边与△的斜边重合在一起,并将△沿方向移动.在移动过程中,两点始终在边上(移动开始时点与点重合).
(1) 在△沿方向移动的过程中,该同学发现:两点间的距离  ;连接的度数       .(填“不变”、“ 逐渐变大”或“逐渐变小”)
(2) △在移动过程中,度数之和是否为定值,请加以说明;
(3) 能否将△移动至某位置,使的连线与平行?如果能,请求出此时的度数,如果不能,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明在学习三角形知识时,发现如下三个有趣的结论:在Rt△ABC中,∠A=90°,BD平分∠ABC,M为直线AC上一点,ME⊥BC,垂足为E,∠AME的平分线交直线AB于点F.
(1)如图①,M为边AC上一点,则BD、MF的位置关系是             
如图②,M为边AC反向延长线上一点,则BD、MF的位置关系是            
如图③,M为边AC延长线上一点,则BD、MF的位置关系是               
(2)请就图①、图②、或图③中的一种情况,给出证明.
我选图     来证明.

 

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线相交于点

(1)的对顶角是_______。图中共有对顶角         对。
(2)若, , 求的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB∥CD,AE交CD与点C,DEAE,垂足为E,, 求的度数。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

正六边形的半径为15,则其边长等于_______。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,将平面图形绕轴旋转一周,得到的几何体是(  ).
A.球   B.圆柱C.半球  D.圆锥

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知∠A=40°,那么∠A的补角的度数等于(     )
A.50°B.60°C.140°D.150°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=________.
A.70°B.80°C.90°D.100°

查看答案和解析>>

同步练习册答案