精英家教网 > 初中数学 > 题目详情
19.在平面直角坐标系中,规定把一个三角形先沿着x轴翻折,再向右平移3个单位称为1次变换,如图,已知等边三角形ABC的顶点B,C的坐标分别是(-1,-1),(-3,-1),把△ABC经过连续8次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是(14,-1-$\sqrt{3}$).

分析 首先由△ABC是等边三角形,点B、C的坐标分别是(-1,-1)、(-3,-1),求得点A的坐标,然后根据题意求得第1次、2次、3次变换后的点A的对应点的坐标,即可得规律:第n次变换后的点A的对应点的为:当n为奇数时为(2n-2,1+$\sqrt{3}$),当n为偶数时为(2n-2,-1-$\sqrt{3}$),继而求得把△ABC经过连续8次这样的变换得到△A′B′C′,则点A的对应点A′的坐标.

解答 解:∵△ABC是等边三角形,点B、C的坐标分别是(-1,-1)、(-3,-1),
∴点A的坐标为(-2,-1-$\sqrt{3}$),
根据题意得:第1次变换后的点A的对应点的坐标为(-2+2,1+$\sqrt{3}$),即(0,1+$\sqrt{3}$),
第2次变换后的点A的对应点的坐标为(0+2,-1-$\sqrt{3}$),即(2,-1-$\sqrt{3}$),
第3次变换后的点A的对应点的坐标为(2+2,1+$\sqrt{3}$),即(4,1+$\sqrt{3}$),
第n次变换后的点A的对应点的为:当n为奇数时为(2n-2,1+$\sqrt{3}$),当n为偶数时为(2n-2,-1-$\sqrt{3}$),
∴把△ABC经过连续8次这样的变换得到△A′B′C′,则点A的对应点A′的坐标是:(14,-1-$\sqrt{3}$).
故答案为:(14,-1-$\sqrt{3}$).

点评 此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点A的对应点的为:当n为奇数时为(2n-2,1+$\sqrt{3}$),当n为偶数时为(2n-2,-1-$\sqrt{3}$)是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.△ABC中,∠A=80°,∠B=3∠C,则∠B=75度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.你能求(x-1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形入手.分别计算下列各式的值:
(1)(x-1)(x+1)=x2-1;
(2)(x-1)(x2+x+1)=x3-1;
(3)(x-1)(x3+x2+x+1)=x4-1;

由此我们可以得到:
(x-1)(x99+x98+x97+…+x+1)=x100-1;
请你利用上面的结论,完成下面两题的计算:
(1)299+298+297+…+2+1;
(2)(-2)50+(-2)49+(-2)48+…+(-2)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.连接AF、CE.
(1)如图1,①写出所有和AF相等的线段.答:AE、CF、CE;②AF=5cm;
(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,
①已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,则a与b满足的数量关系是a+b=12cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知△ABC为等边三角形,∠ABC的平分线BD交AC于点D,E是射线BD上的动点,以AE为边在直线AE的右侧作等边△AEF,连接EF.
(1)如图①,当点F在BD上时,求证:FB=FE;
(2)如图②,当点F不在BD上时,(1)的结论是否成立?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,A(-2,m)、B是双曲线y=-$\frac{8}{x}$上两点,直线AB:y=kx+b(k≠0,且k,b为常数)的图象经过点C(0,5),与x轴交于点D.
(1)求直线AB的解析式和点B的坐标;
(2)写出当x取何值时,关于x的不等式kx+b<-$\frac{8}{x}$成立?
(3)求S△AOB

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知AB=AC,AD是中线,BE=CF.
(1)求证:△BDE≌△CDF;
(2)当∠B=60°时,过AB的中点G,作GH∥BD,求证:GH=$\frac{1}{4}$AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.小亮和小华的家住在滨河大道旁,周六早上,他们两个相约去滨河大道上训练跑步,他们从A路口出发,沿滨河大道跑到B路口再原路返回,因为体力的原因,他们返回的平均速度都是各自出发时速度的$\frac{4}{5}$,设出发时间为x min,距A路口的距离为y cm,图中折线表示小亮在整个训练过程中y与x之间的函数关系图象.
(1)求小亮返回时的平均速度;
(2)求MN所在直线的函数关系式;
(3)如果从A路口到B路口小华的平均速度是小亮平均速度的$\frac{7}{10}$,那么两人出发后多长时间第一次相遇?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,已知A地在B地的正南方3千米处,甲、乙两人同时分别从A、B两地向正北方向匀速行驶,他们与A地的而距离(千米)与所行的时间(时)之间的函数关系如图中AC和BD所示,当他们行驶了4小时后,他们之间的距离为3千米.

查看答案和解析>>

同步练习册答案