分析 根据矩形的性质得到CD=AB=x,BC=AD=y,然后利用直角△BDE的斜边上的中线等于斜边的一半得到:BF=DF=EF=5,则在直角△DCF中,利用勾股定理求得x2+(y-5)2=DF2.
解答 解:∵四边形ABCD是矩形,AB=x,AD=y,
∴CD=AB=x,BC=AD=y,∠BCD=90°.
又∵BD⊥DE,点F是BE的中点,DF=5,
∴BF=DF=EF=5.
∴CF=5-BC=5-y.
∴在直角△DCF中,DC2+CF2=DF2,即x2+(5-y)2=52=25,
∴x2+(y-5)2=x2+(5-y)2=25.
故答案为:25.
点评 本题考查了勾股定理,直角三角形斜边上的中线以及矩形的性质.根据“直角△BDE的斜边上的中线等于斜边的一半”求得BF的长度是解题的突破口.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
月利润(万元) | 1 | 2 | 3 | 4 |
人数 | 2 | 4 | 3 | 1 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com