精英家教网 > 初中数学 > 题目详情
请作出五边形ABCDE以点O为位似中心的位似图形,使得像和原图形的位似比是1:2.
分析:连接OA并延长,在延长线上截取AA′=OA,同理截取BB′=OB,CC′=OC,DD′=OD,EE′=OE,连接A′B′,B′C′,C′D′,D′E′,E′A′,可得五边形A′B′C′D′E′为所求的五边形.
解答:解:画出图形如下:五边形A′B′C′D′E′为所求的五边形.
点评:此题考查了作图-位似变换,画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

28、阅读探究:
例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N、求证:AM=MN.
思路点拨:取的AB中点P,连接PM,易证△APM≌△MCQ从而AM=MN.
问题解决:
(1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.
①填空:当∠AMN=
90°
°时,AM=MN;
②证明①的结论.
(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N、求证:AM=MN.
思路点拨:取的AB中点P,连接PM,易证△APM≌△MCQ从而AM=MN.
如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形ABCD的外角∠DCQ的平分线.
①填空:当∠AMN=______°时,AM=MN;
②证明①的结论.
请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)

查看答案和解析>>

科目:初中数学 来源:江苏期末题 题型:探究题

阅读探究:
例:如图1,△ABC是等边三角形,点M是边BC的中点,∠AMN=60°,且MN交三角形外角的平分线CN于点N.求证:AM=MN.
思路点拨:取的AB中点P,连结PM 易证△APM ≌△MCQ 从而AM=MN.
问题解决:
(1)如图2,四边形ABCD是正方形,点M是边BC的中点,CN是正方形 ABCD的外角∠DCQ的平分线.
        ①填空:当∠AMN = __________ °时,AM=MN;
        ②证明①的结论.
(2)请根据例题和问题(1)的解题过程,在正五边形ABCDE中推广出一个类似的真命题.(请在图3中作出相应图形,标注必要的字母,并写出已知和结论,无需证明.)

查看答案和解析>>

同步练习册答案