精英家教网 > 初中数学 > 题目详情

【题目】(1)平面上有四个点ABCD,按照以下要求作图:

作直线AD

作射线CB交直线AD于点E

连接ACBD交于点F

(2)图中共有 条线段;

(3)若图中FAC的一个三等分点,AFFC已知线段AC上所有线段之和为18,求AF.

【答案】(1)画图见解析;(2)12;(3)AF=3.

【解析】

1)根据语句作图即可

2)每条直线上有3条线段一共4条直线共有12条线段

3AF=x,依题意知,CF=2xAC=3x根据“线段AC上所有线段之和为18”列方程求解即可

(1)如图所示;

(2) 每条直线上有3条线段一共4条直线共有12条线段故答案为:12

(3)AF=x,依题意知,CF=2xAC=3x,∴x+2x+3x=18解得:x=3,∴AF=3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】3分)如图,△ABC中,AB=ACAB的垂直平分线交边ABD点,交边ACE点,若△ABC△EBC的周长分别是40cm24cm,则AB= cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣ x2+ x+4经过A、B两点.

(1)写出点A、点B的坐标;
(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;
(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是

A. 乙摩托车的速度较快

B. 经过0.3小时甲摩托车行驶到A,B两地的中点

C. 经过0.25小时两摩托车相遇

D. 当乙摩托车到达A地时,甲摩托车距离A地km

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是(  )

A.80°
B.110°
C.120°
D.140°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠A=50°,BC=6,以BC为直径的半圆O与AB、AC分别交于点D、E,则图中阴影部分面积之和等于(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC,且∠ACB=90°.

(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明):
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5分)已知AB两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.

1)求yx的函数关系,并写出自变量x的取值范围;

2)当汽车行驶了2小时时,求汽车距B地有多少千米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,∠3=∠B,∠1+∠2=180°,∠AED=∠C大小相等吗?请说明理由.

请完成填空并补充完整.

解:因为∠1+∠2=180°(已知)

又因为∠2+∠   =180°(邻补角的意义)

所以∠1=∠      

查看答案和解析>>

同步练习册答案