分析 根据切线长定理,得出BD=BE,AF=AD,设CE=x,根据勾股定理得出x,再求得△ABC的面积即可.
解答 解:∵⊙I是直角△ABC的内切圆,
∴BD=BE,AF=AD,
∵AF=10,BE=3,
∴BD=3,AD=10,
设CE=x,则CF=x,
在Rt△ABC中,AC2+BC2=AB2,
∴(x+10)2+(x+3)2=132,
解得x1=-15,x2=2,
∴CE=2,
∴BC=5,AC=12,
∴S△ABC=$\frac{1}{2}$AC•BC=$\frac{1}{2}$×5×12=30,
故答案为30.
点评 本题考查了三角形的内切圆与内心,以及切线长定理,勾股定理,熟记切线长定理的内容是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 13 | B. | 12 | C. | 11 | D. | $\sqrt{157}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com