精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两位同学进校时需要从学校大门ABC三个入口处中的任意一处测量体温,体温正常方可进校.

1)甲同学在A入口处测量体温的概率是

2)求甲、乙两位同学在同一入口处测量体温的概率.(用画树状图列表的方法写出分析过程)

【答案】1 ;(2P(甲、乙两位同学在同一入口处测量体温)=

【解析】

1)直接根据概率公式求解即可;

2)根据题意画出树状图得出所有等情况数和甲、乙两位同学在同一入口处测量体温的情况数,然后根据概率公式即可得出答案.

解:(1)∵学校有ABC三个大门入口,

∴甲同学在A入口处测量体温的概率是

故答案为:

2)根据题意画图如下:

由图可知共有9种等情况数,其中甲、乙两位同学在同一入口处测量体温的有3种,

P(甲、乙两位同学在同一入口处测量体温)=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD的边长为4P BC上的动点,连接PA,作PQPAPQCDQ,连接AQ ,则AQ的最小值是(

A.5B.C.D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,ABAC,∠BACα,直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BDCD.

(1)如图1

①求证:点BCD在以点A为圆心,AB为半径的圆上.

②直接写出∠BDC的度数(用含α的式子表示)______.

(2)如图2,当α60°时,过点DBD的垂线与直线l交于点E,求证:AEBD.

(3)如图3,当α90°时,记直线lCD的交点为F,连接BF.将直线l绕点A旋转,当线段BF的长取得最大值时,直接写出tanFBC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1AB为⊙O的直径,C为⊙O上一点,DBC延长线一点,且BC=CD,直线CE与⊙O相切于点C,与AD相交于点E

1)求证:CEAD

2)如图2,设BE与⊙O交于点FAF的延长线与CE交于点P

①求证:∠PCF=CBF

②若PF=6tanPEF=,求PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy(如图),已知抛物线y=﹣+bx+c(其中bc是常数)经过点A(2,﹣2)与点B(04),顶点为M

1)求该抛物线的表达式与点M的坐标;

2)平移这条抛物线,得到的新抛物线与y轴交于点C(C在点B的下方),且BCM的面积为3.新抛物线的对称轴l经过点A,直线lx轴交于点D

求点A随抛物线平移后的对应点坐标;

EG在新抛物线上,且关于直线l对称,如果正方形DEFG的顶点F在第二象限内,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的内切圆⊙OBCCAAB分别相切于点DEF,且AB5BC13CA12,则阴影部分(即四边形AEOF)的面积是( )

A.4B.6.25C.7.5D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线交BC于点E,连接OE

(1)求证:△DBE是等腰三角形

(2)求证:△COE∽△CAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP

1)求证:DP是⊙O的切线;

2)若tanPDC,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线yaxa为抛物线yax2+bx+cabc为常数,a≠0)的梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形.已知抛物线y=﹣x2x+2与其梦想直线交于AB两点(点A在点B的左侧),与x轴负半轴交于点C

1)填空:该抛物线的梦想直线的解析式为   ,点A的坐标为   ,点B的坐标为   

2)如图,点M为线段CB上一动点,将△ACMAM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的梦想三角形,求点N的坐标;

3)当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案