【题目】在同一平面直角坐标系中,一次函数y=ax+c和二次函数y=﹣ax2+c(a≠c)的图象大致为( )
A.B.
C.D.
【答案】B
【解析】
可先根据一次函数的图象判断a、c的符号,求出一次函数与x轴的交点位置,再判断二次函数图象,求出二次函数与x轴的交点位置,进而判断是否相符即可.
A、由一次函数y=ax+c的图象可得:a>0,c>0,与x轴的交点坐标为(﹣,0),与y轴的交点是(0,c),此时二次函数y=﹣ax2+c的图象应该开口向下,与x轴的交点坐标为(±,0),与y轴的交点是(0,c),因为a≠c,所以两函数图象与x轴的交点不会重合,故A错误;
B、由一次函数y=ax+c的图象可得:a>0,c>0,与x轴的交点坐标为(﹣,0),与y轴的交点是(0,c),此时二次函数y=﹣ax2+c的图象应该开口向下,与x轴的交点坐标为(±,0),与y轴的交点是(0,c),因为a≠c,所以两函数图象与x轴的交点不会重合,故B正确;
C、由一次函数y=ax+c的图象可得:c>0,由二次函数y=﹣ax2+c的图象可得c<0,故错误;
D、由一次函数y=ax+c的图象可得:a<0,c<0,与x轴的交点坐标为(﹣,0),与y轴的交点是(0,c),此时二次函数y=﹣ax2+c的图象应该开口向上,与x轴的交点坐标为(±,0),与y轴的交点是(0,c),因为a≠c,所以两函数图象与x轴的交点不会重合,故D错误;
故选:B.
科目:初中数学 来源: 题型:
【题目】如图,已知AB=8,P为线段AB上一个动点,分别以AP,PB为边在AB的同侧作菱形APCD和PBFE,点P,C,E在一条直线上,∠DAP=60°,M,N分别是对角线AC,BE的中点,当点P在线段AB上移动时,点M,N之间的距离最短为( )
A. B. C. 4D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,AC分别是半⊙O的直径和弦,OD⊥AC于点D,过点A作半⊙O的切线AP,AP与OD的延长线交于点P.连接PC并延长与AB的延长线交于点F.
(1)求证:PC是半⊙O的切线;
(2)若∠CAB=30°,AB=10,求线段BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A、B,与y轴交于点C,点O为坐标原点,点D为抛物线顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,则△ABD的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750m2?
(2)能否使所围矩形场地的面积为810m2,为什么?
(3)怎样围才能使围出的矩形场地面积最大?最大面积为多少?请通过计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数y=与一次函数y=﹣x﹣k在第二象限内的交点,AB⊥x轴于点B,且S△ABO=3.
(1)求这两个函数的表达式;
(2)求一次函数与反比例函数的两个交点A,C的坐标和△AOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
①E为AB的中点;
②FC=4DF;
③S△ECF=;
④当CE⊥BD时,△DFN是等腰三角形.
其中一定正确的是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).
(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1,画出△A1B1C1;
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2.
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com