精英家教网 > 初中数学 > 题目详情

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为A(x1,0),B(x2,0),且x1+x2="4," .

(1)求抛物线的代数表达式;

(2)设抛物线与y轴交于C点,求直线BC的表达式;

(3)求△ABC的面积.

 

【答案】

(1)y=-x2+4x-3;(2)y=x-3;(3)3

【解析】

试题分析:(1)先解方程组, 求得x1、x2的值,再代入抛物线y=-x2+bx+c即可求得抛物线的代数表达式;

(2)设直线BC的表达式为y=kx+m,先求得抛物线与y轴的交点坐标,再根据待定系数法即可求得直线BC的表达式;

(3)分别求出AB、OC的长,再根据三角形的面积公式即可求得结果.

(1)解方程组, 得x1=1,x2=3.

 ,解这个方程组,得b=4,c=-3.

所以,该抛物线的代数表达式为y=-x2+4x-3.

(2)设直线BC的表达式为y=kx+m.

由(1)得,当x=0时,y=-3,故C点坐标为(0,-3).

所以,解得

∴直线BC的代数表达式为y=x-3

(3)由于AB=3-1=2,OC=│-3│=3.

故S△ABC=AB·OC=×2×3=3.

考点:二次函数的应用

点评:二次函数的应用是初中数学的重点和难点,在中考中极为常见,在各种题型中均有出现,尤其是综合题,一般难度较大,需多加注意.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线与x轴交于A(-1,0)、B(4,0)两点,与y轴交于点精英家教网C(0,3).
(1)求抛物线的解析式;
(2)求直线BC的函数解析式;
(3)在抛物线上,是否存在一点P,使△PAB的面积等于△ABC的面积,若存在,求出点P的坐标,若不存在,请说明理由.
(4)点Q是直线BC上的一个动点,若△QOB为等腰三角形,请写出此时点Q的坐标.(可直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)精英家教网、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•衡阳)如图,已知抛物线经过A(1,0),B(0,3)两点,对称轴是x=-1.
(1)求抛物线对应的函数关系式;
(2)动点Q从点O出发,以每秒1个单位长度的速度在线段OA上运动,同时动点M从O点出发以每秒3个单位长度的速度在线段OB上运动,过点Q作x轴的垂线交线段AB于点N,交抛物线于点P,设运动的时间为t秒.
①当t为何值时,四边形OMPQ为矩形;
②△AON能否为等腰三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)点P是抛物线对称轴上一点,若△PAB∽△OBC,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c的顶点是(-1,-4),且与x轴交于A、B(1,0)两点,交y轴于点C;
(1)求此抛物线的解析式;
(2)①当x的取值范围满足条件
-2<x<0
-2<x<0
时,y<-3;
     ②若D(m,y1),E(2,y2)是抛物线上两点,且y1>y2,求实数m的取值范围;
(3)直线x=t平行于y轴,分别交线段AC于点M、交抛物线于点N,求线段MN的长度的最大值;
(4)若以抛物线上的点P为圆心作圆与x轴相切时,正好也与y轴相切,求点P的坐标.

查看答案和解析>>

同步练习册答案