【题目】如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.
(1)求证:AD=AE;
(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.
【答案】(1)证明见解析;(2)直线OA垂直平分BC.理由见解析.
【解析】试题分析:(1)根据AAS推出△ACD≌△ABE,根据全等三角形的性质得出即可;
(2)证Rt△ADO≌Rt△AEO,推出∠DAO=∠EAO,根据等腰三角形的性质推出即可.
试题解析:(1)证明:∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°,
△ACD和△ABE中,
∵
∴△ACD≌△ABE(AAS),
∴AD=AE.
(2)猜想:OA⊥BC.
证明:连接OA、BC,
∵CD⊥AB,BE⊥AC,
∴∠ADC=∠AEB=90°.
在Rt△ADO和Rt△AEO中,
∵
∴Rt△ADO≌Rt△AEO(HL).
∴∠DAO=∠EAO,
又∵AB=AC,
∴OA⊥BC.
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,CD是⊙O的切线,切点为D,DC与AB的延长线交于点C,∠A=30°,给出下面3个结论:∠BDC=∠A;AB=2BC;AD2=3BC2;其中正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.
(1)试探究BE与BF的数量关系,并证明你的结论;
(2)求EF的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠1=60,∠2=60,∠3=57,则∠4=57,下面是A,B,C,D四个同学的推理过程,你认为推理正确的是( )
A.因为∠1=60=∠2,所以a∥b,所以∠4=∠3=57
B.因为∠4=57=∠3,所以a∥b,故∠1=∠2=60
C.因为∠2=∠5,又∠1=60,∠2=60,故∠1=∠5=60,所以a∥b,所以∠4=∠3=57
D.因为∠1=60,∠2=60,∠3=57,所以∠1=∠3=∠2-∠4=60-57=3,
故∠4=57
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com