精英家教网 > 初中数学 > 题目详情
(2012•思明区质检)已知m2=m+1,4n2=2n+1,若m≠2n,则m+2n=
1
1
分析:由已知的两等式的特点,得到m与2n为方程x2-x-1=0的解的两根,利用根与系数的关系求出两根之和,即为m+2n的值.
解答:解:由m2=m+1,4n2=2n+1,得到m与2n为方程x2-x-1=0的解,
则m+2n=-
b
a
=1.
故答案为:1.
点评:此题考查了一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,方程有解,设方程两解分别为x1,x2,则有x1+x2=-
b
a
,x1x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•思明区质检)用科学记数法表示815000,结果为
8.15×105
8.15×105

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•思明区质检)下列判断正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•思明区质检)分解因式:2am2-2a=
2a(m+1)(m-1)
2a(m+1)(m-1)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•思明区质检)初三(一)班45名学生中有23个女生,将每个学生的名字分别写在一张纸条上,放入盒子中搅匀,班长闭着眼睛从盒子中随机取出一张纸条,抽中女生的概率是
23
45
23
45

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•思明区质检)如图,平行四边形ABCD中,AB=8,BC=10,∠B为锐角,tan∠B=
43
.E为线段AB上的一个动点(不包括端点),EF⊥AB,交射线BC于点G,交射线DC于点F.
(1)若点G在线段BC上,求△BEG与△CFG的周长之和;
(2)判断在点E的运动过程中,△AED与△CGD是否会相似?如果相似,请求出BE的长;如果不相似,请说明理由.

查看答案和解析>>

同步练习册答案