精英家教网 > 初中数学 > 题目详情
若两个相似多边形的对应边的比是5:4,则这两个多边形的面积比是______.
∵两个相似多边形的对应边的比是5:4,
∴这两个多边形的面积比=(
5
4
2=25:16.
故答案为:25:16.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到
1
次平移,
2
次旋转.小明发现△B∽△A,其相似比为
2:1
.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有
121
个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是
正三边形、正六边形

(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源:第25章《图形的变换》中考题集(15):25.2 旋转变换(解析版) 题型:解答题

我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是______;
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源:第29章《相似形》中考题集(19):29.5 相似三角形的性质(解析版) 题型:解答题

我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是______;
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源:第3章《图形的相似》中考题集(18):3.3 相似三角形的性质和判定(解析版) 题型:解答题

我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是______;
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

科目:初中数学 来源:第4章《相似三角形》中考题集(19):4.3 两个三角形相似的判定(解析版) 题型:解答题

我们约定,若一个三角形(记为△A1)是由另一个三角形(记为△A)通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A1是由△A复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1是由△A复制出△A1,又由△A1复制出△A2,再由△A2复制出△A3,形成了一个大三角形,记作△B.以下各题中的复制均是由△A开始的,由复制形成的多边形中的任意两个小三角形(指与△A全等的三角形)之间既无缝隙也无重叠.
(1)图1中标出的是一种可能的复制结果,它用到______次平移,______次旋转.小明发现△B∽△A,其相似比为______.若由复制形成的△C的一条边上有11个小三角形(指有一条边在该边上的小三角形),则△C中含有______个小三角形;
(2)若△A是正三角形,你认为通过复制能形成的正多边形是______;
(3)在复制形成四边形的过程中,小明用到了两次平移一次旋转,你能用两次旋转一次平移复制形成一个四边形吗?如果能,请在图2的方框内画出草图,并仿照图1作出标记;如果不能,请说明理由;
(4)图3是正五边形EFGHI,其中心是O,连接O点与各顶点.将其中的一个三角形记为△A,小明认为正五边形EFGHI是由复制形成的一种结果,你认为他的说法对吗?请判断并说明理由.

查看答案和解析>>

同步练习册答案