精英家教网 > 初中数学 > 题目详情
(2010•锦州)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.
(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式,当销售单价为何值时,所获利润最大,最大利润是多少?

【答案】分析:(1)设y与x的函数关系式为y=kx+b,利用图象经过点(60,400)和(70,300),利用待定系数法求解即可;
(2)用x表示总利润,得到W=-10x2+1500x-50000,根据二次函数最值的求法求当销售单价为70元时,所获得利润有最大值为6000元.
解答:解:(1)最高销售单价为50(1+40%)=70(元),(1分)
根据题意,设y与x的函数关系式为y=kx+b(k≠0),(1分)
∵函数图象经过点(60,400)和(70,300),
,(1分)
解得
∴y与x之间的函数关系式为y=-10x+1000,
x的取值范围是50≤x≤70;(2分)

(2)根据题意,w=(x-50)(-10x+1000),(1分)
W=-10x2+1500x-50000,w=-10(x-75)2+6250,(1分)
∵a=-10,∴抛物线开口向下,
又∵对称轴是x=75,自变量x的取值范围是50≤x≤70,
∴w随x的增大而增大,(1分)
∴当x=70时,w最大值=-10(70-75)2+6250=6000(元),
∴当销售单价为70元时,所获得利润有最大值为6000元.(2分)
点评:主要考查利用函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意:数学应用题来源于实践用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《数据收集与处理》(04)(解析版) 题型:解答题

(2010•锦州)某校开展以“庆国庆60周年”为主题的艺术活动,举办了四个项目的比赛.它们分别是:A演讲、B唱歌、C书法、D绘画.要求每位同学必须参加且限报一项.以九年(一)班为样本进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给出的信息解答下列问题:
(1)求出参加绘画比赛的学生人数占全班总人数的百分比;
(2)求出扇形统计图中参加书法比赛的学生所在的扇形圆心角的度数;
(3)若该校九年级学生共有500人,请你估计这次活动中参加演讲和唱歌的学生共有多少人?

查看答案和解析>>

科目:初中数学 来源:2010年辽宁省锦州市中考数学试卷(解析版) 题型:解答题

(2010•锦州)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.
(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式,当销售单价为何值时,所获利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省锦州市中考数学试卷(解析版) 题型:解答题

(2010•锦州)某商场购进一批单价为50元的商品,规定销售时单价不低于进价,每件的利润不超过40%.其中销售量y(件)与所售单价x(元)的关系可以近似的看作如图所表示的一次函数.
(1)求y与x之间的函数关系式,并求出x的取值范围;
(2)设该公司获得的总利润(总利润=总销售额-总成本)为w元,求w与x之间的函数关系式,当销售单价为何值时,所获利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:2009年辽宁省锦州市中考数学试卷(解析版) 题型:解答题

(2010•锦州)某校开展以“庆国庆60周年”为主题的艺术活动,举办了四个项目的比赛.它们分别是:A演讲、B唱歌、C书法、D绘画.要求每位同学必须参加且限报一项.以九年(一)班为样本进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给出的信息解答下列问题:
(1)求出参加绘画比赛的学生人数占全班总人数的百分比;
(2)求出扇形统计图中参加书法比赛的学生所在的扇形圆心角的度数;
(3)若该校九年级学生共有500人,请你估计这次活动中参加演讲和唱歌的学生共有多少人?

查看答案和解析>>

同步练习册答案