精英家教网 > 初中数学 > 题目详情

如图所示,AB是⊙O的一条弦(不是直径),点C,D是直线AB上的两点,且AC=BD.
(1)判断△OCD的形状,并说明理由.
(2)当图中的点C与点D在线段AB上时(即C,D在A,B两点之间),(1)题的结论还存在吗?

解:(1)△OCD是等腰三角形
如左图所示,过点O作OM⊥AB,垂足为M,则有MA=MB
又AC=BD
∴AC+MA=BD+MB
即CM=DM
又OM⊥CD,即OM是CD的垂直平分线
∴OC=OD
∴△OCD为等腰三角形


(2)当点C,D在线段AB上时,如右图所示
同(1)题作OM⊥AB,垂足为M
由垂径定理,得AM=BM
又AC=BD
∴CM=AM-AC=BM-BD=MD
∴OC=OD
∴△OCD为等腰三角形.
分析:(1)过点O作OM⊥AB,根据垂径定理得出MA=MB,又因为AC=BD,可推理出CM=DM,根据垂直平分线上的点到线段两端的距离相等即可得出结论.
(2)解法和(1)相似.
点评:此题通过两问,引导同学们进行探索,得出相同结论,开阔了同学们的视野,体会数学的奥妙.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A.
(1)求证:BC与⊙O相切;
(2)若OC∥AD,OC交BD于点E,BD=6,CE=4,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,AD是弦,∠DBC=∠A,OC⊥BD于点E.
(1)求证:BC是⊙O的切线;
(2)若BD=12,EC=10,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,则⊙O的半径为
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,AB是⊙O直径,OD⊥弦BC于点F,且交⊙O于点E,且∠AEC=∠ODB.
(1)判断直线BD和⊙O的位置关系,并给出证明;
(2)当AB=10,BC=8时,求△DFB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,AB是⊙O直径,∠D=35°,则∠BOC等于(  )

查看答案和解析>>

同步练习册答案