精英家教网 > 初中数学 > 题目详情
如图,为抛物线上对称轴右侧的一点,且点轴上方,过点垂直轴于点垂直轴于点,得到矩形.若,求矩形的面积.
个平方单位
轴,的纵坐标为
时,,即
解得.                                           (4分)
抛物线的对称轴为,点在对称轴的右侧,

矩形的面积为个平方单位
已知了AP=1,即P点的纵坐标为1,代入抛物线的解析式中即可得出P点的横坐标,即OA、BP的长.然后根据矩形的面积公式即可求出矩形PAOB的面积.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图已知二次函数图象的顶点坐标为,直线的图象与该二次函数的图象交于两点,其中点坐标为点在轴上,直线与轴的交点为为线段上的一个动点(点不重合),过轴的垂线与这个二次函数的图象交于点.
(1)求的值及这个二次函数的解析式;
(2)设线段的长为,点的横坐标为,求之间的函数关系式,并写出自变量的取值范围;
(3)为直线与这个二次函数图象对称轴的交点,在线段上是否存在点,使得以点为顶点的三角形与相似?若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

泰州新星电子科技公司积极应对世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和y与x之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线的一部分,且点A,B,C的横坐标分别为4,10,12
(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;
(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);
(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是(      )
A.y=2(x+1)2+3B.y=2(x-1)2-3
C.y=2(x+1)2-3D.y=2(x-1)2+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线C0的解析式为y=x2-2x
(1)求抛物线C0的顶点坐标;
(2)将抛物线C0每次向右平移2个单位,平移n次,依次得到抛物线C1、C2、C3、…、Cn(n为正整数)
①求抛物线C1与x轴的交点A1、A2的坐标;
②试确定抛物线Cn的解析式.(直接写出答案,不需要解题过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在梯形中,,点分别在线段上(点与点不重合),且,设

(1)求的函数表达式;
(2)当为何值时,有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数 的图像可能是              【    】

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是【   】
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的顶点坐标是(  )
A.(-1,-2)B.(-1,2)C.(1,-2)D.(1,2)

查看答案和解析>>

同步练习册答案