精英家教网 > 初中数学 > 题目详情
25、如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
分析:先根据角平分线的定义得出∠EFD+∠EFG=180°,再由同角的补角相等及内错角相等,两直线平行可判断出BD∥EF,再根据两直线平行,同旁内角互补可得到∠BDE+∠DEF=180°,进而可判断出
DE∥BC,由平行线的性质即可得出答案.
解答:解:∠AED=∠C,理由如下:
∵∠EFD+∠EFG=180°,
∠BDG+∠EFG=180°,
∴∠BDG=∠EFD,
∴BD∥EF,
∴∠BDE+∠DEF=180°,
又∵∠DEF=∠B,
∴∠BDE+∠B=180°,
∴DE∥BC,
∴∠AED=∠C.
点评:本题考查主要考查了平行线的判定与性质,熟知平行线得判定与性质的区别是解答此题的关键,即性质与判定的已知和结论正好相反,都是角的关系与平行线相关.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、推理填空:
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明.
解:∠AED=∠C.理由如下:
∵∠EFD+∠EFG=180°(邻补角的定义)
∠BDG+∠EFG=180°(已知)
∴∠BDG=∠EFD(
同角的补角相等

∴BD∥EF(
内错角相等,两直线平行

∴∠BDE+∠DEF=180°(
两直线平行,同旁内角互补

又∵∠DEF=∠B(
已知

∴∠BDE+∠B=180°(
等量代换

∴DE∥BC(
同旁内角互补,两直线平行

∴∠AED=∠C(
两直线平行,同位角相等

查看答案和解析>>

科目:初中数学 来源: 题型:

推理填空(10分) 每空1分

如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明

 

查看答案和解析>>

科目:初中数学 来源: 题型:

推理填空(10分) 每空1分
如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明

查看答案和解析>>

科目:初中数学 来源:2014届重庆奉节县直中学七年级下期中考试数学试卷(解析版) 题型:解答题

推理填空(10分) 每空1分

如图,已知:∠BDG+∠EFG=180°,∠DEF=∠B.试判断∠AED与∠C的大小关系,并加以说明

 

查看答案和解析>>

同步练习册答案