精英家教网 > 初中数学 > 题目详情
精英家教网已知如图,△ABC中,AD⊥BC于D,AC=BD=5,tan∠CAD=
12
,求AB的值.
分析:根据题中所给的条件,在直角三角形中解题,知道正切值,在Rt△ADC中可以求出AD,然后在Rt△ADB中求AB.
解答:解:∵AD⊥BC,
△ADC为Rt△,又在Rt△ADC中
tan∠CAD=
CD
AD
=
1
2

∴设CD=xAD=2x,
由:CD2+AD2=AC2
x2+4x2=25,
∵x>0∴x=
5
,(3分)
∴在Rt△ADB中
AB=
AD2+BD2

=
20+25

=
45
=3
5
,(5分)
即AB长为3
5
.(6分)
点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,关键运用好两三角形的邻边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图,△ABC中,∠ACB=90°,△BCD中,∠D=90°,CD=BD,又AC=6,tan∠ABC=
12
.求△BCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、已知如图,△ABC中,D在BC上,且∠1=∠2,请你在空白处填一个适当的条件:当
∠B=∠C(或∠ADB=∠ADC或 AD⊥BC或AB=AC)
时,则有△ABD≌△ACD.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,△ABC中,BD⊥AC于D,tanA=
12
,BD=3,AC=10.求sinC.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图在△ABC中,∠ACB=90°,CD⊥AB于D,∠A的平分线交CD于F,BC于E,过点E作EH⊥AB于H.求证:EC=CF=EH.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图:△ABC中,AB=AC,BE=CD,BD=CF,则∠EDF=(  )

查看答案和解析>>

同步练习册答案