精英家教网 > 初中数学 > 题目详情
如果x2+1与4x2-3x-5互为相反数,则x的值为   
【答案】分析:此题是文字题,根据相反数的定义(和为零的两个数,互为相反数)得,(x2+1)+(4x2-3x-5)=0,解此方程即可求得.
解答:解:据题意得,
x2+1)+(4x2-3x-5)=0;
x2-3x-4=0;
∴a=,b=-3,c=-4;
∴b2-4ac=81
∴x=
∴x1=,x2=-
点评:解此题的关键是理解题意,列的方程,正确理解运用一元二次方程的求根公式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
若设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,那么由根与系数的关系得:x1+x2=-
b
a
,x1x2=
c
a
.∵
b
a
=-(x1+x2)
c
a
=x1x2
,∴ax2+bx+c=a(x2+
b
a
x+
c
a
)
=a[x2-(x1+x2)x+x1x2]=a(x-x1)(x-x2).于是,二次三项式就可以分解因式ax2+bx+c=a(x-x1)(x-x2).
(1)请用上面的方法将多项式4x2+8x-1分解因式.
(2)判断二次三项式2x2-4x+7在实数范围内是否能利用上面的方法因式分解,并说明理由.
(3)如果关于x的二次三项式mx2-2(m+1)x+(m+1)(1-m)能用上面的方法分解因式,试求出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料再回答问题:
对于函数y=x2,当x=1时,y=1,当x=-1时,y=1;当x=2时,y=4,当x=-2时,y=4;…
而点(1,1)与(-1,1),(2,4)与(-2,4),…,都关于y轴对称.显然,如果点(x0,y0)在函数y=x2的图象上,那么,它关于y轴对称的点(-x0,y0)也在函数y=x2的图象上,这时,我们说函数y=x2关于y轴对称.
一般地,如果对于一个函数,当自变量x在允许范围内取值时,若x=x0和x=-x0时,函数值都相等,我们说函数的图象关于y轴对称.
问题:
(1)对于函数y=x3,当自变量x取一对相反数时,函数值也得到一对相反数,则函数y=x3的图象关于
原点
原点
对称.(“x轴”、“y轴”或“原点”).
(2)下列函数:①y=x3+2x;②y=2x4+4x2;③y=x+
1
x
;④y=-x-2 中,其图象关于y轴对称的有
②④
②④
,关于原点对称的有
①③
①③
(只填序号).
(3)请你写出一个我们学过的函数关系式
y=
k
x
(k≠0)
y=
k
x
(k≠0)
,其图象关于直线y=x对称.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:一般地,如果一元二次方程ax2+bx+c=0(a≠0)有两个实数根x1,x2.那么x1+x2=-
b
a
x1x2=
c
a
.我们把一元二次方程的根与系数关系的这个结论称为“韦达定理”.根据这个结论解决下面问题:
已知方程4x2-2x-1=0的两个根为x1,x2,不解方程,求下列代数式的值:
(1)
1
x1
+
1
x2

(2)x12+x22
(3)
x2
x1
+
x1
x2

(4)(x1-x2)2

查看答案和解析>>

科目:初中数学 来源:《23.2 一元二次方程的解法》2010年第3课时同步练习(解析版) 题型:填空题

如果x2+1与4x2-3x-5互为相反数,则x的值为   

查看答案和解析>>

同步练习册答案