精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线yx2+bx+c与直线yx+3分别相交于AB两点,且此抛物线与x轴的一个交点为C,连接ACBC.已知A(0,3),C(﹣3,0).

(1)求抛物线的解析式;

(2)在抛物线对称轴l上找一点M,使|MBMC|的值最大,并求出这个最大值;

(3)点Py轴右侧抛物线上一动点,连接PA,过点PPQPAy轴于点Q,问:是否存在点P使得以APQ为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.

【答案】1;(2|MBMC|取最大值为;(3)存在点P16),理由见解析

【解析】

1)①将A03),C30)代入yx2bxc,即可求解;

2)分当点BCM三点不共线时、当点BCM三点共线时,两种情况分别求解即可;

3)分当时、当时两种情况,分别求解即可.

1A03),C(﹣30)代入yx2+bx+c得:

,解得:

抛物线的解析式是

2)将直线yx+3表达式与二次函数表达式联立

解得:x0或﹣4

A 03),B(﹣41

当点BCM三点不共线时,

|MBMC|BC

当点BCM三点共线时,

|MBMC|BC

当点、CM三点共线时,|MBMC|取最大值,即为BC的长,

过点Bx轴于点E,在Rt△BEC中,由勾股定理得BC

∴|MBMC|取最大值为

3)存在点P使得以APQ为顶点的三角形与ABC相似.

设点P坐标为(x)(x0

Rt△BEC中,BECE1∴∠BCE45°,

Rt△ACO中,AOCO3∴∠ACO45°

∴∠ACB180°450450900AC3

过点PPQPA于点P,则APQ90°

过点PPQy轴于点G∵∠PQAAPQ90°

PAGQAP∴△PGA∽△QPA

∵∠PGAACB90°

∴①时,

PAG∽△BAC

解得x11x20,(舍去)

P的纵坐标为×12+×1+36

P为(16);

时,

PAG∽△ABC

3

解得x1=﹣(舍去),x20(舍去),

此时无符合条件的点P

综上所述,存在点P16).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.

(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;

(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在ABC 中,AB=AC.

1)求作ABC 外接圆(尺规作图)

2)若ABC 的外接圆的圆心O BC 边的距离为 4BC=6,求外接圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.

1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;

2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?

3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.

(1)抽查D厂家的零件为   件,扇形统计图中D厂家对应的圆心角为   

(2)抽查C厂家的合格零件为   件,并将图1补充完整;

(3)通过计算说明合格率排在前两名的是哪两个厂家;

(4)若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2

例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72

材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.

根据材料回答:

(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;

(2)试证明10不是雪松数;

(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在湖心有一座小塔,小华想知道这座的高塔的高度,于是他在岸边架起了测角仪,他测量的数据如下(如图所示):测量仪位置距水平面的距离为1.5米(即),测得塔顶的仰角为(其中),测得塔顶在水中倒影(即)的俯角为,请你根据上述数据求出这座塔的高度(即.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,D、E为⊙O上位于AB异侧的两点,连接BD并延长至点C,使得CD=BD,连接AC交⊙O于点F,连接AE、DE、DF.

(1)证明:∠E=C;

(2)若∠E=55°,求∠BDF的度数;

(3)设DEAB于点G,若DF=4,cosB=,E是弧AB的中点,求EGED的值.

查看答案和解析>>

同步练习册答案