精英家教网 > 初中数学 > 题目详情
精英家教网如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120°,得到线段OB.
(1)求点B的坐标;
(2)求经过A、O、B三点的抛物线的解析式;
(3)在(2)中抛物线的对称轴上是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;
(4)如果点P是(2)中的抛物线上的动点,且在x轴的下方,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.
(注意:本题中的结果均保留根号).
分析:(1)由已知得OA=2,将线段OA绕原点O顺时针旋转120°,则OB与x轴的正方向夹角为60°,过点B作BD⊥x轴于点D,解直角三角形可得OD、BD的长,可表示B点的坐标;
(2)直接将A、O、B三点坐标代入抛物线解析式的一般式,可求解析式;
(3)因为点A,O关于对称轴对称,连接AB交对称轴于C点,C点即为所求,求直线AB的解析式,再根据C点的横坐标值,求纵坐标;
(4)设P(x,y)(-2<x<0,y<0),用割补法可表示△PAB的面积,根据面积表达式再求取最大值时,x的值.
解答:精英家教网解:(1)过点B作BD⊥x轴于点D,由已知可得:OB=OA=2,∠BOD=60°,
在Rt△OBD中,∠ODB=90°,∠OBD=30°
∴OD=1,DB=
3

∴点B的坐标是(1,
3
).(2分)

(2)设所求抛物线的解析式为y=ax2+bx+c(a≠0),
由已知可得:
c=0
a+b+c=
3
4a-2b+c=0

解得:a=
3
3
,b=
2
3
3
,c=0,
∴所求抛物线解析式为y=
3
3
x2+
2
3
3
x.(4分)

(3)存在,
由y=
3
3
x2+
2
3
3
x配方后得:y=
3
3
(x+1)2-
3
3

∴抛物线的对称轴为x=-1(6分)
(也可用顶点坐标公式求出)
∵点C在对称轴x=-1上,△BOC的周长=OB+BC+CO;
∵OB=2,要使△BOC的周长最小,必须BC+CO最小,
∵点O与点A关于直线x=-1对称,有CO=CA
△BOC的周长=OB+BC+CO=OB+BC+CA
∴当A、C、B三点共线,即点C为直线AB与抛物线对称轴的交点时,BC+CA最小,此时△BOC的周长最小.
设直线AB的解析式为y=kx+b,则有:
k+b=
3
-2k+b=0

解得:k=
3
3
,b=
2
3
3

∴直线AB的解析式为y=
3
3
x+
2
3
3
,(7分)
当x=-1时,y=
3
3

∴所求点C的坐标为(-1,
3
3
),(8分)

(4)设P(x,y)(-2<x<0,y<0),精英家教网
则y=
3
3
x2+
2
3
3
x①
过点P作PQ⊥y轴于点Q,PG⊥x轴于点G,过点A作AF⊥PQ轴于点F,过点B作BE⊥PQ轴于点E,
则PQ=-x,PG=-y,
由题意可得:S△PAB=S梯形AFEB-S△AFP-S△BEP(9分)
=
1
2
(AF+BE)•FE-
1
2
AF•FP-
1
2
PE•BE
=
1
2
(-y+
3
-y)(1+2)-
1
2
(-y)(x+2)-
1
2
(1-x)(
3
-y)
=-
3
2
y+
3
2
x+
3

将①代入②,
化简得:S△PAB=-
3
2
x2-
3
2
x+
3
(10分)
=-
3
2
(x+
1
2
2+
9
3
8

∴当x=-
1
2
时,△PAB得面积有最大值,最大面积为
9
3
8
.(11分)
此时y=
3
3
×
1
4
+
2
3
3
×(-
1
2
)=-
3
4

∴点P的坐标为(-
1
2
,-
3
4
)
.(12分)
点评:本题考查了坐标系中点的坐标求法,抛物线解析式的求法,根据对称性求线段和最小的问题,也考查了在坐标系里表示面积及求面积最大值等问题;
解答本题(4)也可以将直线AB向下平移至与抛物线相切的位置,联立此时的直线解析式与抛物线解析式,可求唯一交点P的坐标.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

18、如图,在直角坐标系中,已知点A(-3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④…,则三角形⑦的直角顶点的坐标为
(24,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标系中,点P的坐标为(3,4),将OP绕原点O逆时针旋转90°得到线段OP′.
(1)在图中画出线段OP′;
(2)求P′的坐标和
PP′
的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,O为原点.反比例函数y=
6
x
的图象经过第一象限的点A,点A的纵坐标是横坐标的
3
2
倍.
(1)求点A的坐标;
(2)如果经过点A的一次函数图象与x轴的负半轴交于点B,AC⊥x轴于点C,若△ABC的面积为9,求这个一次函数的解析式.
(3)点D在反比例函数y=
6
x
的图象上,且点D在直线AC的右侧,作DE⊥x轴于点E,当△ABC与△CDE相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,△ABC的三个顶点的坐标分别为A(-6,0),B(-4,6),C(0,2).画出△ABC的两个位似图形△A1B1C1,△A2B2C2,同时满足下列两个条件:
(1)以原点O为位似中心;
(2)△A1B1C1,△A2B2C2与△ABC的面积比都是1:4.(作出图形,保留痕迹,标上相应字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,已知点A(-4,0),B(0,3),对△OAB连续作旋转变换,依次得到三角形(1),三角形(2),三角形(3),三角形(4),…,

(1)△AOB的面积是
6
6

(2)三角形(2013)的直角顶点的坐标是
(8052,0)
(8052,0)

查看答案和解析>>

同步练习册答案