A. | ①③ | B. | ②④ | C. | ①③④ | D. | ①②③④ |
分析 根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.
解答 解:①∵EG∥BC,
∴∠CEG=∠ACB,
又∵CD是△ABC的角平分线,
∴∠CEG=∠ACB=2∠DCB,故正确;
②无法证明CA平分∠BCG,故错误;
③∵∠A=90°,
∴∠ADC+∠ACD=90°,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ADC+∠BCD=90°.
∵EG∥BC,且CG⊥EG,
∴∠GCB=90°,即∠GCD+∠BCD=90°,
∴∠ADC=∠GCD,故正确;
④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,
∴∠AEB+∠ADC=90°+$\frac{1}{2}$(∠ABC+∠ACB)=135°,
∴∠DFE=360°-135°-90°=135°,
∴∠DFB=45°=$\frac{1}{2}$∠CGE,故正确.
故选C.
点评 本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1<a≤2 | B. | a<$\frac{1}{3}$且a≠-1 | ||
C. | 1<a≤2或a<$\frac{1}{3}$且a≠-1 | D. | a<2且a≠-1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 9 | B. | -7 | C. | 13 | D. | 17 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 73 | B. | 68 | C. | 86 | D. | 97 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{2\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com