精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,∠B=90°,AB=6米,BC=8米,动点P2/秒得速度从A点出发,沿ACC移动,同时,动点Q1/秒得速度从C点出发,沿CBB移动。当其中有一点到达终点时,他们都停止移动,设移动的时间为t秒。

(1)求CPQ的面积S(平方米)关于时间t(秒)的函数关系式;

(2)在P、Q移动的过程中,当CPQ为等腰三角形时,求出t的值;

(3)以P为圆心,PA为半径的圆与以Q为圆心,QC为半径的圆相切时,求出t的值。

【答案】(1) S=;(2) 秒(此时PC=QC),秒(此时PQ=QC),或秒(此时PQ=PC),CPQ为等腰三角形;(3)P与⊙Q内切时

【解析】

1】过点P,作PD⊥BCD,利用30度的锐角所对的直角边等于斜边的一半,即可求得PD的长,然后利用三角形的面积公式即可求解;

2】分PC=QCPC=QC两种情况进行讨论,求解;

3PA为半径的圆与以Q为圆心,QC为半径的圆相切时,分为两圆外切和内切两种情况进行讨论.在直角△PFQ中利用勾股定理即可得到关于t的方程,从而求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,函数(是常数,)在同一平面直角坐标系的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,点DAB边上一点,以BD为直径的⊙O与边AC相切于点 E,连接DE并延长DEBC的延长线于点F.

(1)求证:BD=BF;

(2)若CF=2,tanB=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+2与反比例函数y=(k≠0)的图象交于A(a,3),B(3,b)两点,过点AACx轴于点C,过点BBDx轴于点D.

(1)a,b的值及反比例函数的解析式;

(2)若点P在直线y=﹣x+2上,且SACP=SBDP,请求出此时点P的坐标;

(3)x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 分别交x轴、y轴于A、B两点,已知点C坐标为(6,0),若直线AB上存在点P,使∠OPC=90°,则m的取值范围是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC纸片中,∠C=90°AC=6BC=8,点D在边BC 上,以AD为折痕将△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, AD 为△ ABC 的中线, BE 为△ ABD 的中线.

(1)∠ ABE=15°,∠ BED=55°,求∠ BAD 的度数;

(2)作△ BED 的边 BD 边上的高;

(3)若△ ABC 的面积为 20, BD=2.5,求△ BDE BD 边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等边三角形ABO的边长为4

1)求点A的坐标.

2)若点P从点O出发以每秒1个单位的速度沿x轴正方向运动,运动时间为t秒,PAB的面积为S,求St的关系式,并直接写出t的范围.

3)在(2)的条件下,当点P在点B的右侧时,若S,在平面内是否存在点Q,使点PQAB围成的四边形是平行四边形?若存在,求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】月,振华中学举行了迎国庆中华传统文化节活动.本次文化节共有五个活动:书法比赛;国画竞技;诗歌朗诵;汉字大赛;古典乐器演奏.活动结束后,某班数学兴趣小组开展了“我最喜爱的活动”的抽样调查(每人只选一项),根据收集的数据绘制了两幅不完整的统计图,请根据图中信息,解答下列问题:

(1)此次催记抽取的初三学生共 人, ,并补全条形统计图;

(2)初三年级准备在五名优秀的书法比赛选手中任意选择两人参加学校的最终决赛,这五名选手中有三名男生和两名女生,用树状图或列表法求选出的两名选手正好是一男一女的概率是多少.

查看答案和解析>>

同步练习册答案