精英家教网 > 初中数学 > 题目详情

【题目】Rt△ABC中,AB=AC,点DBC中点.∠MDN=900∠MDN绕点D旋转,DMDN分别与边ABAC交于EF两点.下列结论

①(BE+CF)=BCAD·EF④AD≥EF⑤ADEF可能互相平分,

其中正确结论的个数是( )

A. 1B. 2C. 3D. 4

【答案】C

【解析】

∵Rt△ABC中,AB=AC,点DBC中点.∠MDN=900

∴AD =DC∠EAD=∠C=450∠EDA=∠MDN∠ADN =900∠AND=∠FDC

∴△EDA≌△FDCASA)。∴AE=CF∴BE+CF=" BE+" AE=AB

Rt△ABC中,根据勾股定理,得AB=BC∴(BE+CF)=BC结论正确。

AB=AC=aAE=b,则AF="BE=" ab

结论正确。

如图,过点EEI⊥AD于点I,过点FFG⊥AD于点G,过点FFH⊥BC于点HADEF相交于点O

四边形GDHF是矩形,△AEI△AGF是等腰直角三角形,

∴EO≥EIEF⊥AD时取等于)=FH=GD

OF≥GHEF⊥AD时取等于)=AG

∴EF=EOOF≥GDAG=AD结论错误。

∵△EDA≌△FDC

结论错误。

又当EFRt△ABC中位线时,根据三角形中位线定理知ADEF互相平分。

结论正确。

综上所述,结论①②⑤正确。故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,ABBC3,在BC边上取两点EF(点E在点F的左边),以EF为边所作等边△PEF,顶点P恰好在AD上,直线PEPF分别交直线AC于点GH

1)求△PEF的边长;

2)若△PEF的边EF在线段CB上移动,试猜想:PHBE有何数量关系?并证明你猜想的结论;

3)若△PEF的边EF在射线CB上移动(分别如图和图所示,CF1P不与A重合),(2)中的结论还成立吗?若不成立,直接写出你发现的新结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=x+3x轴交于点A,与y轴交于点B抛物线y=﹣x2+bx+c经过AB两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D

1)求抛物线的解析式;

2)在第三象限内,F为抛物线上一点,以AEF为顶点的三角形面积为3,求点F的坐标;

3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以PBC为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)将长方形纸片ABCD的一边CD沿着CQ向下折叠,使点D落在边AB上的点P处.

1)试判断线段CQPD的关系,并说明理由;

2)如图(2),若AB=CD=5AD=BC=3.求AQ的长;

3)如图(2),BC=3,取CQ的中点M,连接MDPM,若MDPM,求AQAB+BC)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是⊙O外一点,过点P作⊙O的切线,切点为A,连接PO并延长,交⊙O于B、C两点.

(1)求证:△PBA∽△PAC;

(2)若∠BAP=30°,PB=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.

(1)求证:DE是△ABC的外接圆的直径;

(2)设OG=3,CD=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形.RtABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(﹣4,1),点B的坐标为(﹣1,1).

(1)先将RtABC向右平移5个单位,再向下平移1个单位后得到RtA1B1C1.试在图中画出图形RtA1B1C1,并写出A1的坐标;

(2)将RtA1B1C1绕点A1顺时针旋转90°后得到RtA2B2C2,试在图中画出图形RtA2B2C2.并计算RtA1B1C1在上述旋转过程中C1所经过的路程以及RtA1B1C1扫过的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料,完成任务:

自相似图形

定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.

任务:

(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为   

(2)如图2,已知ABC中,ACB=90°,AC=4,BC=3,小明发现ABC也是“自相似图形”,他的思路是:过点C作CDAB于点D,则CD将ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则ACD与ABC的相似比为   

(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).

请从下列A、B两题中任选一条作答:我选择   题.

A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=   (用含b的式子表示);

如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=   (用含n,b的式子表示);

B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含b的式子表示);

如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半圆O的直径为ABD是半圆上的一个动点(不与点AB重合),连接BD并延长至点C,使CDBD,连接AC,过点DDEAC于点E

(1)请猜想DE与⊙O的位置关系,并说明理由;

(2)当AB=4,BAC=45°时,求DE的长.

查看答案和解析>>

同步练习册答案