·ÖÎö £¨1£©ÓÉÌâÒâOQ=OA+AQ=2+t£¬PO=t£¬¼´¿ÉÍƳöPQ=OQ-OP=£¨2+t£©-t=2£®
£¨2£©¢ÙÈçͼ1ÖУ¬µ±µãNÓëµãFÖغÏʱ£¬ÔÚRt¡÷PQNÖУ¬ÓÉ¡ÏPQN=30¡ã£¬PQ=2£¬ÍƳöPN=PQ•tan30¡ã=$\frac{2}{3}$$\sqrt{3}$£¬ÔÚRt¡÷OPNÖУ¬OP=PN•tan30¡ã=$\frac{2}{3}$£¬Óɴ˼´¿ÉÇó³ötµÄÖµ£®
¢ÚÈçͼ2ÖУ¬µ±µãMÓëµãEÖغÏʱ£®ÔÚRt¡÷PQMÖУ¬ÓÉ¡ÏPMQ=30¡ã£¬PQ=2£¬ÍƳöPM=$\frac{PQ}{tan30¡ã}$=2$\sqrt{3}$£¬ÔÚRt¡÷OPMÖУ¬OP=$\frac{PM}{tan30¡ã}$=6£¬Óɴ˼´Çó³ötµÄÖµ£®
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¢ÙÈçͼ3ÖУ¬µ±0£¼t¡Ü$\frac{2}{3}$ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇ¡÷OMN£®¢ÚÈçͼ4ÖУ¬$\frac{2}{3}$£¼t¡Ü6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇËıßÐÎMOFK£®¢ÛÈçͼ5ÖУ¬µ±t£¾6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇÎå±ßÐÎEOFKG£®·Ö±ðÇó½â¼´¿É£®
£¨4£©·ÖÁ½ÖÖÇéÐ΢ÙÈçͼ6ÖУ¬µ±AF¡ÍONʱ£®¢ÚÈçͼ7ÖУ¬µ±AE¡ÍOMʱ£¬·Ö±ðÇó³öOPµÄ³¤¼´¿É½â¾öÎÊÌ⣮
½â´ð ½â£º£¨1£©ÓÉÌâÒâOQ=OA+AQ=2+t£¬PO=t£¬
¡àPQ=OQ-OP=£¨2+t£©-t=2£®
¡àOQ=2+t£¬PQ=2£®
£¨2£©¢ÙÈçͼ1ÖУ¬µ±µãNÓëµãFÖغÏʱ£®
ÔÚRt¡÷PQNÖУ¬¡ß¡ÏPQN=30¡ã£¬PQ=2£¬
¡àPN=PQ•tan30¡ã=$\frac{2}{3}$$\sqrt{3}$£¬
ÔÚRt¡÷OPNÖУ¬OP=PN•tan30¡ã=$\frac{2}{3}$£¬´Ëʱt=$\frac{2}{3}$s£®
¢ÚÈçͼ2ÖУ¬µ±µãMÓëµãEÖغÏʱ£®
ÔÚRt¡÷PQMÖУ¬¡ß¡ÏPMQ=30¡ã£¬PQ=2£¬
¡àPM=$\frac{PQ}{tan30¡ã}$=2$\sqrt{3}$£¬
ÔÚRt¡÷OPMÖУ¬OP=$\frac{PM}{tan30¡ã}$=6£¬
´Ëʱt=6s£®
£¨3£©¢ÙÈçͼ3ÖУ¬µ±0£¼t¡Ü$\frac{2}{3}$ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇ¡÷OMN£¬Ò×ÖªON=2t£¬OM=$\frac{2}{3}$$\sqrt{3}$t£¬
¡àS=$\frac{1}{2}$•ON•OM=$\frac{2}{3}$$\sqrt{3}$t2£®
¢ÚÈçͼ4ÖУ¬$\frac{2}{3}$£¼t¡Ü6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇËıßÐÎMOFK£¬
S=S¡÷OMN-S¡÷FKN=$\frac{2}{3}$$\sqrt{3}$t2-$\frac{1}{2}$•£¨2t-$\frac{t+2}{2}$£©•$\frac{\sqrt{3}}{3}$£¨2t-$\frac{t+2}{2}$£©=$\frac{7\sqrt{3}}{24}$t2+$\frac{\sqrt{3}}{2}$t-$\frac{\sqrt{3}}{6}$£®
¢ÛÈçͼ5ÖУ¬µ±t£¾6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇÎå±ßÐÎEOFKG£®
S=S¡÷OMN-S¡÷KFN-S¡÷EGM=$\frac{7\sqrt{3}}{24}$t2+$\frac{\sqrt{3}}{2}$t-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$•[$\frac{2\sqrt{3}}{3}$t-£¨t+2£©•$\frac{\sqrt{3}}{2}$]•$\sqrt{3}$•[$\frac{2\sqrt{3}}{3}$t-£¨t+2£©•$\frac{\sqrt{3}}{2}$]=$\frac{\sqrt{3}}{4}$t2+$\sqrt{3}$t-$\frac{5\sqrt{3}}{3}$£¬
×ÛÉÏËùÊö£¬S=$\left\{\begin{array}{l}{\frac{2\sqrt{3}}{3}{t}^{2}}&{£¨0£¼t¡Ü\frac{2}{3}£©}\\{\frac{7\sqrt{3}}{24}{t}^{2}+\frac{\sqrt{3}}{2}t-\frac{\sqrt{3}}{6}}&{£¨\frac{2}{3}£¼t¡Ü6£©}\\{\frac{\sqrt{3}}{4}{t}^{2}+\sqrt{3}t-\frac{5\sqrt{3}}{3}}&{£¨t£¾6£©}\end{array}\right.$
£¨4£©¢ÙÈçͼ6ÖУ¬µ±AF¡ÍONʱ£¬
ÔÚRt¡÷OAFÖУ¬OF=OA•cos60¡ã=1£¬
ÔÚRt¡÷OPFÖУ¬OP=$\frac{1}{2}$OF=$\frac{1}{2}$£¬´Ëʱt=$\frac{1}{2}$s£®
¢ÚÈçͼ7ÖУ¬µ±AE¡ÍOMʱ£¬
ÔÚRt¡÷AEOÖУ¬OE=OA•cos30¡ã=$\sqrt{3}$£¬
ÔÚRt¡÷OPEÖУ¬OP=OE•cos30¡ã=$\frac{3}{2}$£¬
×ÛÉÏËùÊö£¬µ±tΪ$\frac{1}{2}$s»ò$\frac{3}{2}$sʱ£¬Ö±ÏßAEºÍÖ±ÏßAFÕâÁ½ÌõÖ±ÏßµÄÒ»ÌõÓë¾ØÐÎQMONµÄ±ß´¹Ö±£®
µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢Èñ½ÇÈý½Çº¯Êý¡¢Èý½ÇÐεÄÃæ»ýÒÔ¼°Â·³Ì¡¢Ëٶȡ¢Ê±¼äÖ®¼äµÄ¹ØϵµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÀûÓ÷ָÇó¶à±ßÐεÄÃæ»ý£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | 2 | B£® | $\frac{1}{2}$ | C£® | -2 | D£® | -$\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com