6£®Èçͼ£¬¡ÏBOC=90¡ã£¬µãAÔÚ¡ÏBOCµÄÄÚ²¿£¬OA=2£¬¡ÏAOC=30¡ã£¬µãP£¬Q·Ö±ð´ÓµãO£¬Aͬʱ³ö·¢£¬¾ùÒÔÿÃë1¸öµ¥Î»³¤¶ÈµÄËÙ¶ÈÑØOA·½ÏòÔ˶¯£®¹ýµãP×÷Ö±Ïßl¡ÍOAÓÚP£¬¹ýµãQ×÷QM¡ÍOBÓÚµãM£¬QN¡ÍOCÓÚµãN£¬ÉèµãPÔ˶¯Ê±¼äΪt£¨s£©
£¨1£©Óú¬tµÄ´úÊýʽ±íʾÏ߶ÎOQºÍÏ߶ÎPQµÄ³¤£»
£¨2£©·Ö±ðÇó³öµãMºÍµãNÂäÔÚÖ±Ïß1ÉÏʱtµÄÖµ£»
£¨3£©ÔÚÔ˶¯¹ý³ÌÖУ¬ÉèÖ±Ïßlɨ¹ý¾ØÐÎQMONµÄÃæ»ýΪS£¬ÇóSÓëtµÄº¯Êý¹Øϵʽ£»
£¨4£©ÉèÖ±ÏßlÓë¾ØÐÎQMONµÄ±ß½»ÓÚµãE£¬FÁ¬½áAE£¬AF£¬µ±tΪºÎֵʱ£¬Ö±ÏßAEºÍÖ±ÏßAFÕâÁ½ÌõÖ±ÏßµÄÒ»ÌõÓë¾ØÐÎQMONµÄ±ß´¹Ö±£¨ÇëÖ±½Óд³ötµÄÖµ£©£®

·ÖÎö £¨1£©ÓÉÌâÒâOQ=OA+AQ=2+t£¬PO=t£¬¼´¿ÉÍƳöPQ=OQ-OP=£¨2+t£©-t=2£®
£¨2£©¢ÙÈçͼ1ÖУ¬µ±µãNÓëµãFÖغÏʱ£¬ÔÚRt¡÷PQNÖУ¬ÓÉ¡ÏPQN=30¡ã£¬PQ=2£¬ÍƳöPN=PQ•tan30¡ã=$\frac{2}{3}$$\sqrt{3}$£¬ÔÚRt¡÷OPNÖУ¬OP=PN•tan30¡ã=$\frac{2}{3}$£¬Óɴ˼´¿ÉÇó³ötµÄÖµ£®
¢ÚÈçͼ2ÖУ¬µ±µãMÓëµãEÖغÏʱ£®ÔÚRt¡÷PQMÖУ¬ÓÉ¡ÏPMQ=30¡ã£¬PQ=2£¬ÍƳöPM=$\frac{PQ}{tan30¡ã}$=2$\sqrt{3}$£¬ÔÚRt¡÷OPMÖУ¬OP=$\frac{PM}{tan30¡ã}$=6£¬Óɴ˼´Çó³ötµÄÖµ£®
£¨3£©·ÖÈýÖÖÇéÐÎÌÖÂÛ¢ÙÈçͼ3ÖУ¬µ±0£¼t¡Ü$\frac{2}{3}$ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇ¡÷OMN£®¢ÚÈçͼ4ÖУ¬$\frac{2}{3}$£¼t¡Ü6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇËıßÐÎMOFK£®¢ÛÈçͼ5ÖУ¬µ±t£¾6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇÎå±ßÐÎEOFKG£®·Ö±ðÇó½â¼´¿É£®
£¨4£©·ÖÁ½ÖÖÇéÐ΢ÙÈçͼ6ÖУ¬µ±AF¡ÍONʱ£®¢ÚÈçͼ7ÖУ¬µ±AE¡ÍOMʱ£¬·Ö±ðÇó³öOPµÄ³¤¼´¿É½â¾öÎÊÌ⣮

½â´ð ½â£º£¨1£©ÓÉÌâÒâOQ=OA+AQ=2+t£¬PO=t£¬
¡àPQ=OQ-OP=£¨2+t£©-t=2£®
¡àOQ=2+t£¬PQ=2£®

£¨2£©¢ÙÈçͼ1ÖУ¬µ±µãNÓëµãFÖغÏʱ£®

ÔÚRt¡÷PQNÖУ¬¡ß¡ÏPQN=30¡ã£¬PQ=2£¬
¡àPN=PQ•tan30¡ã=$\frac{2}{3}$$\sqrt{3}$£¬
ÔÚRt¡÷OPNÖУ¬OP=PN•tan30¡ã=$\frac{2}{3}$£¬´Ëʱt=$\frac{2}{3}$s£®
¢ÚÈçͼ2ÖУ¬µ±µãMÓëµãEÖغÏʱ£®

ÔÚRt¡÷PQMÖУ¬¡ß¡ÏPMQ=30¡ã£¬PQ=2£¬
¡àPM=$\frac{PQ}{tan30¡ã}$=2$\sqrt{3}$£¬
ÔÚRt¡÷OPMÖУ¬OP=$\frac{PM}{tan30¡ã}$=6£¬
´Ëʱt=6s£®

£¨3£©¢ÙÈçͼ3ÖУ¬µ±0£¼t¡Ü$\frac{2}{3}$ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇ¡÷OMN£¬Ò×ÖªON=2t£¬OM=$\frac{2}{3}$$\sqrt{3}$t£¬

¡àS=$\frac{1}{2}$•ON•OM=$\frac{2}{3}$$\sqrt{3}$t2£®
¢ÚÈçͼ4ÖУ¬$\frac{2}{3}$£¼t¡Ü6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇËıßÐÎMOFK£¬

S=S¡÷OMN-S¡÷FKN=$\frac{2}{3}$$\sqrt{3}$t2-$\frac{1}{2}$•£¨2t-$\frac{t+2}{2}$£©•$\frac{\sqrt{3}}{3}$£¨2t-$\frac{t+2}{2}$£©=$\frac{7\sqrt{3}}{24}$t2+$\frac{\sqrt{3}}{2}$t-$\frac{\sqrt{3}}{6}$£®
¢ÛÈçͼ5ÖУ¬µ±t£¾6ʱ£¬Ö±Ïßlɨ¹ý¾ØÐÎQMONµÄͼÐÎÊÇÎå±ßÐÎEOFKG£®

S=S¡÷OMN-S¡÷KFN-S¡÷EGM=$\frac{7\sqrt{3}}{24}$t2+$\frac{\sqrt{3}}{2}$t-$\frac{\sqrt{3}}{6}$-$\frac{1}{2}$•[$\frac{2\sqrt{3}}{3}$t-£¨t+2£©•$\frac{\sqrt{3}}{2}$]•$\sqrt{3}$•[$\frac{2\sqrt{3}}{3}$t-£¨t+2£©•$\frac{\sqrt{3}}{2}$]=$\frac{\sqrt{3}}{4}$t2+$\sqrt{3}$t-$\frac{5\sqrt{3}}{3}$£¬
×ÛÉÏËùÊö£¬S=$\left\{\begin{array}{l}{\frac{2\sqrt{3}}{3}{t}^{2}}&{£¨0£¼t¡Ü\frac{2}{3}£©}\\{\frac{7\sqrt{3}}{24}{t}^{2}+\frac{\sqrt{3}}{2}t-\frac{\sqrt{3}}{6}}&{£¨\frac{2}{3}£¼t¡Ü6£©}\\{\frac{\sqrt{3}}{4}{t}^{2}+\sqrt{3}t-\frac{5\sqrt{3}}{3}}&{£¨t£¾6£©}\end{array}\right.$

£¨4£©¢ÙÈçͼ6ÖУ¬µ±AF¡ÍONʱ£¬

ÔÚRt¡÷OAFÖУ¬OF=OA•cos60¡ã=1£¬
ÔÚRt¡÷OPFÖУ¬OP=$\frac{1}{2}$OF=$\frac{1}{2}$£¬´Ëʱt=$\frac{1}{2}$s£®
¢ÚÈçͼ7ÖУ¬µ±AE¡ÍOMʱ£¬

ÔÚRt¡÷AEOÖУ¬OE=OA•cos30¡ã=$\sqrt{3}$£¬
ÔÚRt¡÷OPEÖУ¬OP=OE•cos30¡ã=$\frac{3}{2}$£¬
×ÛÉÏËùÊö£¬µ±tΪ$\frac{1}{2}$s»ò$\frac{3}{2}$sʱ£¬Ö±ÏßAEºÍÖ±ÏßAFÕâÁ½ÌõÖ±ÏßµÄÒ»ÌõÓë¾ØÐÎQMONµÄ±ß´¹Ö±£®

µãÆÀ ±¾Ì⿼²éËıßÐÎ×ÛºÏÌâ¡¢¾ØÐεÄÐÔÖÊ¡¢Èñ½ÇÈý½Çº¯Êý¡¢Èý½ÇÐεÄÃæ»ýÒÔ¼°Â·³Ì¡¢Ëٶȡ¢Ê±¼äÖ®¼äµÄ¹ØϵµÈ֪ʶ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÓ÷ÖÀàÌÖÂÛµÄ˼Ïë˼¿¼ÎÊÌ⣬ѧ»áÀûÓ÷ָÇó¶à±ßÐεÄÃæ»ý£¬ÊôÓÚÖп¼Ñ¹ÖáÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Ò»×éÊý¾ÝΪ£º1£¬2£¬5£¬10£¬17£¬26£¬¡­£¬¹Û²ìÆä¹æÂÉ£¬ÍƶϵÚ7¸öÊý¾ÝΪ37£¬µÚn¸öÊý¾ÝӦΪ£¨n-1£©2+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èç¹û¶þ´Î¸ùʽ$\sqrt{3x+1}$ÓÐÒâÒ壬ÄÇôxµÄÈ¡Öµ·¶Î§ÊÇx¡Ý-$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖª£¬Èçͼ£¬µÈÑüÖ±½Ç¡÷ABCÓëµÈÑüÖ±½Ç¡÷CEF£¬¡ÏABC=¡ÏCEF=90¡ã£¬Á¬½áAF£¬MʱAFµÄÖе㣬Á¬½áMB£¬ÇÒµãC£¬B£¬EÔÚͬһֱÏßÉÏ£®ÇóÖ¤£ºBM¡ÎCF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖª£ºAB¡¢CDΪ¡ÑOµÄÖ±¾¶£¬ÏÒBE½»CDÓÚµãF£¬Á¬½ÓDE½»ABÓÚµãG£¬GO=GD£®
£¨1£©Èçͼ1£¬ÇóÖ¤£ºDE=DF£»
£¨2£©Èçͼ2£¬×÷ÏÒAK¡ÎDC£¬AK½»BEÓÚµãN£¬Á¬½ÓCK£¬ÇóÖ¤£ºËıßÐÎKNFCΪƽÐÐËıßÐΣ»
£¨3£©Èçͼ3£¬×÷ÏÒCH£¬Á¬½ÓDH£¬¡ÏCDH=3¡ÏEDH£¬CH=2$\sqrt{11}$£¬BE=4$\sqrt{7}$£¬ÇóDHµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®$\frac{1}{2}$µÄµ¹ÊýÊÇ£¨¡¡¡¡£©
A£®2B£®$\frac{1}{2}$C£®-2D£®-$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô£¨x-1£©£¨y+1£©=3£¬xy£¨x-y£©=4£¬Ôòx7-y7=1136£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®¶¬¼¾µÄ¶´Í¥ÊÇÄñ¶ùµÄÀÖÔ°£¬Ã¿·ê¶¬¼¾£¬´óÁ¿ºîÄñ³ÉȺ½á¶ÓÀ´µ½¶´Í¥ºþʪµØÔ½¶¬£¬ÌØÉ«¾°ÏóÒýÀ´Ðí¶àÓο͹ÛÉÍ£®½ñÄ궬¼¾£¬Ä³ÖÐѧ׼±¸×éÖ¯°ËÄ꼶ѧÉúµ½¶«¶´Í¥ºþ¹ÛÄñ£¬¸ÐÊÜ´ó×ÔÈ»ÃÀ¾°£®Ñ§Ð£´Ó¾ýɽ¹«½»¹«Ë¾×âÀ´Á˼¸Á¾´ó¿Í³µ×÷Ϊ½»Í¨¹¤¾ß£®ÈôÿÁ¾³µ×ø40ÈË£¬Ôò»¹ÓÐ8ÈË×ø²»Ï£»ÈôÿÁ¾³µ×ø45ÈË£¬ÔòÓÐÒ»Á¾³µ×ø²»Âú£¬Çó°ËÄ꼶ѧÉúÈËÊýºÍ³µÁ¾Êý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£¬¼ºÖªÏ߶ÎAB¼°µãC£¬ÔÚ·½¸ñÖ½ÉÏ»­Í¼²¢»Ø´ðÎÊÌ⣮
£¨1£©»­Ö±ÏßAC£»
£¨2£©¹ýµãB»­Ö±ÏßACµÄƽÐÐÏßl£»
£¨3£©¹ýµãB»­Ö±ÏßACµÄ´¹Ïߣ¬´¹×ãÊÇD£»µãBµ½Ö±ÏßACµÄ¾àÀëÊÇÏ߶ÎBDµÄ³¤¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸