【题目】将一个矩形纸片放置在平面直角坐标系内,点,点,点.点是线段上的动点,将沿翻折得到.
(Ⅰ)如图①,当点落在线段上时,求点的坐标;
(Ⅱ)如图②,当点为线段中点时,求线段的长度;
【答案】(Ⅰ)P(62,4)(Ⅱ)
【解析】
(Ⅰ)如图①,证明AO=AP=6,利用勾股定理求出PB即求出点P的坐标.
(Ⅱ)如图②,连接CC′交OP于D.解直角三角形求出PD,利用三角形的中位线定理即可解决问题.
(Ⅰ)∵点,点,
∴OA=6,OC=4,
由翻折可知:∠OPC=∠OPA,
∵BC∥OA,
∴∠OPC=∠OPA,
∴∠POA=∠OPA,
∴OA=PA=6,
在Rt△PAB中,
∵∠B=90,AB=4,PA=6,
∴PB==,
∴PC=BCPB=62,
∴P(62,4).
(Ⅱ)如图②,连接CC′交OP于D.
在Rt△OPC中,∵OC=4,PC=3,
∴OP=,
∵OP垂直平分线段CC′,
又∵OPCD=OCPC,
∴CD==,PD=
∵PC=PB,CD=DC′,
∴BC′=2PD=.
科目:初中数学 来源: 题型:
【题目】已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.
(1)求证:四边形ADBE是矩形;
(2)求矩形ADBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】M(﹣1,),N(1,)是平面直角坐标系xOy中的两点,若平面内直线MN上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.
(1)在点,,,A4(2,2)中,线段MN的可视点为 ;
(2)若点B是直线y=x上线段MN的可视点,求点B的横坐标t的取值范围;
(3)直线y=x+b(b≠0)与x轴交于点C,与y轴交于点D,若线段CD上存在线段MN的可视点,直接写出b的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
(1)求证:PB是⊙O的切线;
(2)若OC=3,AC=4,求PB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC和Rt△BCD中,∠BAC=∠BDC=90°,BC=4,AB=AC,∠CBD=30°,M,N分别在BD,CD上,∠MAN=45°,则△DMN的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知多边形ABCDEF中,AB=AF,DC=DE,BC=EF,∠ABC=∠BCD.请仅用无刻度的直尺,分别按下列要求画图.
(1)在图①中,画出一个以BC为边的矩形;
(2)在图②中,若多边形ABCDEF是正六边形,试在AF上画出点M,使得AM=AF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并解决相应问题:
材料一:换元法是数学中的重要方法,利用换元法可以从形式上简化式子,在求解某些特殊方程时,利用换元法常常可以达到转化的目的,例如在求解一元四次方程,就可以令,则原方程就被换元成,解得 t 1,即,从而得到原方程的解是 x 1
材料二:杨辉三角形是中国数学上一个伟大成就,在中国南宋数学家杨辉 1261 年所著的《详解九章算法》一书中出现,它呈现了某些特定系数在三角形中的一种有规律的几何排列,下图为杨辉三角形:
……………………………………
(1)利用换元法解方程:
(2)在杨辉三角形中,按照自上而下、从左往右的顺序观察, an 表示第 n 行第 2 个数(其中 n≥4),bn 表示第 n 行第 3 个数,表示第行第 3 个数,请用换元法因式分解:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com