分析 (1)由切线的性质得到ED=EB,再判断出∠C=∠CDE,得出ED=EC即可;
(2)①得出OD⊥AB,得到点D是AC中点,即OD是三角形ABC的中位线,求出BC,
②得出BE=1,先求出三角形ODE的面积,再利用切线的性质求出EF,进而用勾股定理求出BD,即可得出三角形BDE的面积,由三角形的中线得出三角形CDE的面积,即可.
解答 解:(1)连BD,如图,
∵AB为⊙O的直径,∠ABC=90°,
∴BC是⊙O的切线,
又∵DE与⊙O相切,
∴ED=EB,
∴∠EBD=∠EDB,
而∠C=90°-∠EBD,∠CDE=90°-∠EDB,
∴∠C=∠CDE,
∴ED=EC,
∴EB=EC,
即E为BC的中点,
(2)①如图,连接OD,
∵四边形ODCE是平行四边形;
∴OD=CE,OD∥BC,
由(1)知,BE=CE,
∴OD=BE=$\frac{1}{2}$AB=2,
∴BC=2BE=4,
故答案为4,
②如图3,
由(1)知,DE=BE=$\frac{1}{2}$BC=1,
在△OBE和△ODE中$\left\{\begin{array}{l}{OB=OD}\\{BE=DE}\\{OE=OE}\end{array}\right.$,
∴△OBE≌△ODE,
∴S△ODE=S△OBE=$\frac{1}{2}$BE×OB=$\frac{1}{2}$×1×2=1,
在Rt△OBE中,BE=1,OB=2,
∴OE=$\sqrt{5}$,
根据射影定理,BE2=EF×OE,
∴EF=$\frac{B{E}^{2}}{OE}=\frac{1}{\sqrt{5}}$=$\frac{\sqrt{5}}{5}$,
在Rt△BEF中,BE=1,
∴BF=$\sqrt{B{E}^{2}-E{F}^{2}}$=$\frac{2\sqrt{5}}{5}$,
∴BD=2BF=$\frac{4\sqrt{5}}{5}$,
∴S△BDE=$\frac{1}{2}$BD×EF=$\frac{1}{2}$×$\frac{4\sqrt{5}}{5}$×$\frac{\sqrt{5}}{5}$=$\frac{2}{5}$,
∵DE是△BCD的中线,
∴S△CDE=S△BDE=$\frac{2}{5}$,
∴S四边形ODCE的面积=S△ODE+S△CDE=1+$\frac{2}{5}$=$\frac{7}{5}$.
故答案为:$\frac{7}{5}$.
点评 此题是切线的性质,主要考查了切线的性质,直角三角形的性质,勾股定理,射影定理,解本题的关键是求出EF.
科目:初中数学 来源:2017届广东省佛山市顺德区九年级第一次模拟考试数学试卷(解析版) 题型:单选题
如图,A、B、C是⊙O上的三点,∠B=75°,则∠AOC的度数是( )
A. 120° B. 130° C. 140° D. 150°
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 16米 | B. | 15米 | C. | 14米 | D. | 12米 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com