【题目】如图,在△ABC中,AB=10,BC=8,AC=6.点D在AB边上(不包括端点),DE⊥AC,DF⊥BC,垂足分别为点E和点F,连结EF.
(1)判断四边形DECF的形状,并证明;
(2)线段EF是否存在最小值?如果存在,请求出最小值;如果不存在,请说明理由.
【答案】(1)四边形DECF是矩形,理由见解析;(2)存在,EF=4.8.
【解析】
(1)根据勾股定理的逆定理得到△ABC是直角三角形,∠C=90°,由垂直的定义得到∠DEC=DFC=90°,于是得到四边形DECF是矩形;
(2)连结CD,由矩形的性质得到CD=EF,当CD⊥AB时,CD取得最小值,即EF为最小值,根据三角形的面积即可得到结论.
解:(1)四边形DECF是矩形,
理由:∵在△ABC中,AB=10,BC=8,AC=6,
∴BC2+AC2=82+62=102=AB2,
∴△ABC是直角三角形,∠C=90°,
∵DE⊥AC,DF⊥BC,
∴∠DEC=DFC=90°,
∴四边形DECF是矩形;
(2)存在,连结CD,
∵四边形DECF是矩形,
∴CD=EF,
当CD⊥AB时,CD取得最小值,即EF为最小值,
∵S△ABC=ABCD=ACBC,
∴10×CD=6×8,
∴EF=CD=.
科目:初中数学 来源: 题型:
【题目】直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.
(1)求直线AB的解析式;
(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】列方程或方程组解应用题:
为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程kx2+(3k+1)x+3=0.
(1)求证:无论k取任何实数时,方程总有实数根;
(2)若二次函数y=kx2+(3k+1)x+3的图象与x轴两个交点的横坐标均为整数,且k为正整数,求k值;
(3)在(2)的条件下,设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是( )
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某幢建筑物,从10米高的窗口A用水管和向外喷水,喷的水流呈抛物线(抛物线所在平面与墙面垂直),(如图)如果抛物线的最高点M离墙1米,离地面米,则水流下落点B离墙距离OB是( )
A. 2米 B. 3米 C. 4米 D. 5米
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com