精英家教网 > 初中数学 > 题目详情
解方程:
(1)
x
x-2
-1=
8
x2-4
.        
(2)
x
x-2
+
6
x+2
=1
考点:解分式方程
专题:计算题
分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
解答:解:(1)去分母得:x(x+2)-x2+4=8,
去括号得:x2+2x-x2+4=8,
移项合并得:2x=4,
解得:x=2,
经检验x=2增根,分式方程无解;
(2)去分母得:x(x+2)+6(x-2)=x2-4,
去括号得:x2+2x+6x-12=x2-4,
移项合并得:8x=8,
解得:x=1,
经检验x=1是分式方程的解.
点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

保障房建设是民心工程,广东省某市从2009年开始加快保障房建设进程,现统计了该市2009年到2013年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.

(1)小丽看了统计图后说:“该市2012年新建保障房的套数比2011年少了.”你认为小丽说法正确吗?请说明理由.
(2)请补全条形统计图.
(3)求这5年平均每年新建保障房的套数.

查看答案和解析>>

科目:初中数学 来源: 题型:

分解因式:
(1)x2+6x+9;
(2)x2(a-b)+(b-a).

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)问题情境:如图①,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.

(2)探究发现:如图②,点M、N在反比例函数y=
k
x
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E、F.你发现MN与EF之间有着怎样的位置关系?说明你的理由.
(3)应用发现:如图③,在平面直角坐标系中,函数y=
m
x
(x>0,m是不为0的常数)的图象经过点A(1,4)、B(a,b),其中a>1.过点A作x轴的垂线,垂足为C,过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接AD、DC、CB与AB.已知AD=BC,求直线AB的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

甲、乙两人同时从家乘车去书店,途中甲因故下车,改骑自行车前往书店(换车的时间不计).已知甲骑自行车的速度为15千米/小时,乙到达书店停留2小时后,以另一速度返回,2小时后与甲相遇.下图为甲、乙两人之间的距离S(千米)与行驶时间t(小时)之间的函数关系.
(1)a=
 
,b=
 
,c=
 

(2)求出乙返回到与甲相遇过程中,S与t之间的函数关系式及乙返回时的行驶速度;
(3)求出相遇时距离家有多远及家与书店之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=
1
2
x2+bx+c
(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).
(1)请直接写出点OA的长度;
(2)若常数b,c满足关系式:bc=3.求抛物线的解析式;
(3)在(2)的条件下,点P是x轴下方抛物线上的动点,连接PB、PC.设△PBC的面积为S.
①求S的取值范围;
②若△PBC的面积S为整数,则这样的点P共有多少个(直接写出结果)?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ACB=90°,AC=8,sinB=
4
5
,D为边AC中点,P为边AB上一点(点P不与点A、B重合),直线PD交BC延长线与E,设线段BP长为x,线段CE长为y.
(1)求y关于x的函数解析式并写出定义域;
(2)过点D作BC平行线交AB与点F,在DF延长线上取一点Q,使得QF=DF,联结PQ、QE、QE交边AC于G点
①当△EDQ与△EGD相似时,求x的值;
②求证:
PD
PQ
=
DE
QE

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在由边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1
(1)将△ABC绕点A顺时针旋转90°,画出相应的△AB1C1
(2)将△AB1C1沿射线AA1平移到△A1B2C2处,画出△A1B2C2
(3)点C在两次变换过程中所经过的路径长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

比较大小:2
3
 
3.(填“>”、“<”或“=”)

查看答案和解析>>

同步练习册答案