如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.
(1)求证:AB是⊙O的切线;
(2)若D为OA的中点,阴影部分的面积为-,求⊙O的半径r.
分析:(1)连OC,由OA=OB,CA=CB,根据等腰三角形的性质得到OC⊥AB,再根据切线的判定定理得到结论; (2)由D为OA的中点,OD=OC=r,根据含30度的直角三角形三边的关系得到∠A=30°,∠AOC=60°,,AC=r,则∠AOB=120°,AB=2r,利用S阴影部分=S△OAB-S扇形ODE,根据三角形的面积公式和扇形的面积公式得到关于r的方程,解方程即可. 解答:(1)证明:连OC,如图, ∵OA=OB,CA=CB, ∴OC⊥AB, ∴AB是⊙O的切线; (2)解:∵D为OA的中点,OD=OC=r, ∴OA=2OC=2r, ∴∠A=30°,∠AOC=60°,AC=r, ∴∠AOB=120°,AB=2r, ∴S阴影部分=S△OAB-S扇形ODE=·OC·AB-=-, ∴·r·2r-r2=-, ∴r=1, 即⊙O的半径r为1. 点评:本题考查了切线的判定定理:过半径的外端点与半径垂直的直线为圆的切线.也考查了含30度的直角三角形三边的关系以及扇形的面积公式. |
切线的判定与性质;勾股定理;扇形面积的计算. |
科目:初中数学 来源: 题型:
3 |
π |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
3 |
π |
3 |
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,△OAB的底边与⊙O相切,切点为C,且OA=OB,⊙O与OA、OB分别交于D、E两点,D、E分别为OA、OB的中点。
1.求的度数;
2.若阴影部分的面积为,求⊙O的半径r
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2013年辽宁省营口市中考模拟(一)数学试卷(解析版) 题型:解答题
如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.
(1)求证:AB是⊙O的切线;
(2)若D为OA的中点,阴影部分的面积为,求⊙O的半径r.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com