分析 根据等边三角形的性质推出∠BCE=∠FCA=60°,求出∠BCA=∠FCE,证△BCA≌△ECF,推出AD=EF=AB,同理得出DE=AF,即可得出结论.
解答 证明:∵△BCE、△ACF、△ABD都是等边三角形,
∴AB=AD,AC=CF,BC=CE,∠BCE=∠ACF,
∴∠BCE-∠ACE=∠ACF-∠ACE,
即∠BCA=∠FCE,
在△BCA和△ECF中,
$\left\{\begin{array}{l}{BC=CE}\\{∠BCA=∠ECF}\\{AC=CF}\end{array}\right.$,
∴△BCA≌△ECF(SAS),
∴AB=EF,
∵AB=AD,
∴AD=EF,
同理:△BDE≌△BAC,
∴DE=AF,
∴四边形ADEF是平行四边形.
点评 此题主要考查了等边三角形的性质和平行四边形的判定以及全等三角形的判定与性质,得出△BCA≌△ECF是解题关键.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com