【题目】问题:探究函数y=|x|-1的性质.
小凡同学根据学习函数的经验,对函数y=|x|-1的图象与性质进行了探究.下面是小凡的探究过程,请补充完整:
(1)在函数y=|x|-1中,自变量x的取值范围是______________;
(2)下表是y与x的几组对应值.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ||
y | 2 | 1 | 0 | -1 | 0 | 1 | m |
①m=_________;
②若A(n,9),B(10,9)为该函数图象上不同的两点,则_n=__________;
(3)如下图,在平面直角坐标系xOy中,描出以上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;
(4)结合函数图象,解决问题:
①函数的最小值为________;
②已知直线与函数的图象交于C,D两点,当y1≥y时x的取值范围是___________.
【答案】(1)全体实数(或任意实数) (2)①2 ②-10 (3)作图见解析 (4)①-1 ②
【解析】
(1)根据函数和图象的性质,写出自变量x的取值范围即可;
(2)①根据函数解析式求出m的值即可;②根据函数解析式求出n的值即可;
(3)利用描点法作出图象即可;
(4)①根据图象求出最小值即可;②分情况讨论:1)当时,2)当时,分别列不等式求解即可.
(1)根据函数和图象的性质可得,自变量x的取值范围是全体实数(或任意实数);
(2)①令,则;
②∵A(n,9),B(10,9)为该函数图象上不同的两点
∴且
解得;
(3)如图所示,即为所求;
(4)①如图所示,当时,函数有最小值,最小值为-1;
②1)当时,
∵
∴
解得
∴
2)当时,
∵
∴
解得
∴
综上所述,.
科目:初中数学 来源: 题型:
【题目】将一副三角板按如图放置,小明得到下列结论:①如果∠2=30°,则有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,则有∠2=30°;④如果∠CAD=150°,则∠4=∠C;那么其中正确的结论有________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MGMH=,其中正确结论为( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:有一组对边相等目这一组对边所在直线互相垂直的凸四边形叫做“等垂四边形”.
(1)如图①,四边形与四边形都是正方形,,求证:四边形是“等垂四边形”;
(2)如图②,四边形是“等垂四边形”,,连接,点,,分别是AD,BC,BD的中点,连接EG,FG,EF.试判定的形状,并证明;
(3)如图③,四边形是“等垂四边形”,,,试求边AB长的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,∠ABD的平分线BE交AD于点E,∠CDB的平分线DF交BC于点F.
(1)求证:△ABE≌△CDF;
(2)若AB=DB,猜想:四边形DFBE是什么特殊的四边形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC于点F,连接DE、EF.
(1)求证:AE=DF;
(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.
(3)当t为何值时,△DEF为直角三角形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某办公大楼正前方有一根高度是米的旗杆,从办公楼顶端测得旗杆顶端的俯角是,旗杆底端到大楼前梯坎底边的距离是米,梯坎坡长是米,梯坎坡度,求大楼的高度.(精确到米,参与数据: , , )
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,的顶点坐标为:,,.
(1)将向左平移2个单位长度,再向上平移1个单位长度,得.画出并写出的顶点坐标;
(2)请判断的形状并求它的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19m),另外三边利用学校现有总长38m的铁栏围成。
(1)若围成的面积为180m2,试求出自行车车棚的长和宽;
(2)能围成的面积为200m2自行车车棚吗?如果能,请你给出设计方案;如果不能,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com