精英家教网 > 初中数学 > 题目详情
(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
(1)见解析(2)成立(3)△DEF为等边三角形
解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900
∵∠BAC=900,∴∠BAD+∠CAE=900
∵∠BAD+∠ABD=900,∴∠CAE=∠ABD。
又AB="AC" ,∴△ADB≌△CEA(AAS)。∴AE=BD,AD=CE。
∴DE="AE+AD=" BD+CE。
(2)成立。证明如下:
∵∠BDA =∠BAC=,∴∠DBA+∠BAD=∠BAD +∠CAE=1800。∴∠DBA=∠CAE。
∵∠BDA=∠AEC=,AB=AC,∴△ADB≌△CEA(AAS)。∴AE=BD,AD=CE。
∴DE=AE+AD=BD+CE。
(3)△DEF为等边三角形。理由如下:
由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,
∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600
∴∠DBA+∠ABF=∠CAE+∠CAF。∴∠DBF=∠FAE。
∵BF=AF,∴△DBF≌△EAF(AAS)。∴DF=EF,∠BFD=∠AFE。
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600
∴△DEF为等边三角形。
(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE。
(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD。
(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知四边形ABCD是平行四边形(如图),把△ABD沿对角线BD翻折180°得到△AˊBD.

(1)利用尺规作出△AˊBD.(要求保留作图痕迹,不写作法);
(2)设D Aˊ与BC交于点E,求证:△BAˊE≌△DCE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写做法,保留作图痕迹);

(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;

(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:
如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE=          °。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

一节数学课后,老师布置了一道课后练习题:
如图,已知在Rt△ABC中,AB=BC,∠ABC=90°,BO⊥AC,于点O,点PD分别在AO和BC上,PB=PD,DE⊥AC于点E,求证:△BPO≌△PDE.

(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:

根据上述思路,请你完整地书写本题的证明过程.
(2)特殊位置,证明结论
若PB平分∠ABO,其余条件不变.求证:AP=CD.
(3)知识迁移,探索新知
若点P是一个动点,点P运动到OC的中点P′时,满足题中条件的点D也随之在直线BC上运动到点D′,请直接写出CD′与AP′的数量关系.(不必写解答过程)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将一副三角尺如图拼接:含30°角的三角尺(△ABC)的长直角边与含45°角的三角尺(△ACD)的斜边恰好重合.已知AB=2,P是AC上的一个动点.
(1)直接写出AD=_____,AC=_______,BC=_______,四边形ABCD的面积=______;
(2)当点P在运动过程中出现PD=BC时,求此时∠PDA的度数;
(3)当点P运动到什么位置时,以D,P,B,Q为顶点的平行四边形的顶点Q恰好在边BC上?求出此时□DPBQ的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面四个图形中,线段BE是△ABC的高的图是(     )

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若△ABC∽△DEF,且对应边BC与EF的比为2∶3,则△ABC与△DEF的面积等于______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知△ABC中,∠A=∠B=∠C,则△ABC是   三角形.

查看答案和解析>>

同步练习册答案