精英家教网 > 初中数学 > 题目详情
点A,B的坐标分别为(-2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,.其中正确的是( )
A.②④
B.②③
C.①③④
D.①②④
【答案】分析:根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.
解答:解:∵点A,B的坐标分别为(-2,3)和(1,3),
∴线段AB与y轴的交点坐标为(0,3),
又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),
∴c≤3,(顶点在y轴上时取“=”),故①错误;
∵抛物线的顶点在线段AB上运动,
∴当x<-2时,y随x的增大而增大,
因此,当x<-3时,y随x的增大而增大,故②正确;
若点D的横坐标最大值为5,则此时对称轴为直线x=1,
根据二次函数的对称性,点C的横坐标最小值为-2-4=-6,故③错误;
根据顶点坐标公式,=3,
令y=0,则ax2+bx+c=0,
CD2=(-2-4×=
根据顶点坐标公式,=3,
=-12,
∴CD2=×(-12)=
∵四边形ACDB为平行四边形,
∴CD=AB=1-(-2)=3,
=32=9,
解得a=-,故④正确;
综上所述,正确的结论有②④.
故选A.
点评:本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,点A、B的坐标分别为(-3,0)、(0,3).
(1)一次函数图象上的两点P、Q在直线AB的同侧,且直线PQ与y轴交点的纵坐标大于3,若△PAB与△QAB的面积都等于3,求这个一次函数的解析式;
(2)二次函数的图象经过点A、B,其顶点C在x轴的上方且在直线PQ上,求这个二次函数的解析式;
(3)若使(2)中所确定的抛物线的开口方向不变,顶点C在直线PQ上运动,当点C运动到点精英家教网C′时,抛物线在x轴上截得的线段长为6,求点C′的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙岩质检)在平面直角坐标系中,ABOC如图放置,点A、C的坐标分别为(0,3)、(-1,0),
将ABOC绕点0顺时针旋转90°,得到A′B′OC′,若抛物线过点C、A、A′.
(1)求此抛物线的解析式;
(2)若p抛物线的对称轴上一点,使得PA′+PB′的值最小,求出点P的坐标及PA′+PB′的最小值;
(3)若点M是抛物线上的一点,问是否存在以点A、A′、C′、M为顶点的梯形?若存在,求出此时点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•唐山二模)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为
16
16
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(4,0)、(4,3),动点M、N分别从点O、B同时出发,以每秒1个单位的速度运动,其中点M沿OA向终点A运动,点N沿BC向终点C运动,过点N作NP⊥BC,交AC于点P,连接MP,当两动点运动了t秒时.解答下列问题:
(1)点P的坐标为(
4-t
4-t
3
4
t
3
4
t
 ).(用含t的式子表示);
(2)若△MPA的面积为S,当S=
3
2
时,求t的值;
(3)若点Q在y轴上,当S=
3
2
且△QAN为等腰三角形时,求直线AQ的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在边长为1的小正方形组成的网格中,△AOB的三个顶点均在格点上,点A、B的坐标分别为A(-2,3)、B(-3,1).
(1)画出△AOB绕点O顺时针方向旋转90°后的△A′OB′;
(2)写出点A′、B′的坐标;
(3)求点A绕点O旋转到点A′所经过的路径的长.

查看答案和解析>>

同步练习册答案