精英家教网 > 初中数学 > 题目详情
如图所示,在图(1)中互不重叠的三角形共有4个,在图(2)中互不重叠的三角形共有7个,在图(3)中互不重叠的三角形共有10个,…,则在图(6)中,互不重叠的三角形共有(  )
分析:根据图形结合题目所给数据寻找规律,发现图2比图1多3个互不重叠的三角形,即4+3个;图3比图2多3个互不重叠的三角形,即4+3×2个;依此类推,图n中互不重叠的三角形的个数是4+3(n-1),即3n+1个.
解答:解:第(1)个图中三角形有3×1+1=4(个);
第(2)个图中三角形有3×2+1=7(个);
第(3)个图中三角形有3×3+1=10(个),
照此规律,第(6)个图中三角形有3×6+1=19(个).
故选C.
点评:本题考查了图形的变化类问题,把图形和数据相结合,找出其中的内在联系,按照规律便能顺利解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.
(1)求证:BE=CD;
(2)求证:△AMN是等腰三角形;
(3)在图①的基础上,将△ADE绕点A按顺时针方向旋转,使D点落在线段AB上,其他条件不变,得到图②所示的图形.(1)、(2)中的两个结论是否仍然成立吗?请你直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在平面直角坐标系中.二次函数y=a(x-2)2-1图象的顶点为P,与x轴交点为A、B,与y轴交点为C.连接BP并延长交y轴于点D.连接AP,△APB为等腰直角三角形.
精英家教网
(1)求a的值和点P、C、D的坐标;
(2)连接BC、AC、AD.将△BCD绕点线段CD上一点E逆时针方向旋转90°,得到一个新三角形.设该三角形与△ACD重叠部分的面积为S.
①当点E在(0,1)时,在图中画出旋转后的三角形,并出求S;
②当点E在线段CD(端点C、D除外)上运动时,设E(0,b),用含b的代数式表示S,并判断当b为何值时,重叠部分的面积最大,写出最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图(1),矩形纸片ABCD中,AD=28cm,AB=20cm.
(1)将矩形ABCD沿折线AE对折,使AB与AD边重合,B点落在F点处(如图(2)所示);再剪去四边形CEFD,余下的部分如图(3)所示.若将余下的纸片展形,则所得的四边形ABEF的形状是
 
,它的面积为
 
cm2
(2)将图(3)中的纸片沿折线AG对折,使AF与AE边重合,F点落在H点处(如图(4)所示),再沿HG将△HE剪去,余下的部分如图(5)所示.把图(5)的纸片完全展开,请你在图(6)的矩形ABCD中画出展开后图形的示意图,剪去的部分用阴影表示,折痕用虚线表示.
(3)求图(5)中的纸片完全展形后图形的面积(结果保留整数).精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),矩形纸片ABCD中,AD=28cm,AB=20cm.
(1)将矩形ABCD沿折线AE对折,使AB与AD边重合,B点落在F点处(如图(2)所示);再剪去四边形CEFD,余下的部分如图(3)所示.若将余下的纸片展形,则所得的四边形ABEF的形状是______,它的面积为______cm2
(2)将图(3)中的纸片沿折线AG对折,使AF与AE边重合,F点落在H点处(如图(4)所示),再沿HG将△HE剪去,余下的部分如图(5)所示.把图(5)的纸片完全展开,请你在图(6)的矩形ABCD中画出展开后图形的示意图,剪去的部分用阴影表示,折痕用虚线表示.
(3)求图(5)中的纸片完全展形后图形的面积(结果保留整数).

查看答案和解析>>

科目:初中数学 来源:期中题 题型:解答题

如图所示,在平面直角坐标系xoy中,M是X轴正半轴上一点,⊙M与X轴的正半轴交于A、B两点,A在B的左侧,且OA、OB的长是方程x2-12x+27=0的两根,ON是⊙M的切线,N为切点,N在第四象限。
(1)求⊙M的直径;
(2)求直线ON对应的函数关系式;
(3)在x轴上是否存在一点T,使△OTN是等腰三角形?若存在,请直接写出T的坐标;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案