精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-
2
3
x2+bx+c
的图象经过B、C两点.
(1)直接写出点B、点C坐标;
(2)求该二次函数的解析式;
(3)结合函数的图象探索,直接写出不等式-
2
3
x2+bx+c≥0
的解集为
-1≤x≤3
-1≤x≤3
分析:(1)根据正方形的性质得出点B、C的坐标;
(2)由(1)代入解析式,利用待定系数法求函数解析式解答;
(3)令y=0求出二次函数图象与x轴的交点坐标,再根据y>0,二次函数图象在x轴的上方写出的x取值范围即可.
解答:解:(1)∵边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,
∴由题意可得:AB=2,BC=2,
故:B(2,2),C(0,2);

(2)将B、C坐标代入y=-
2
3
x2+bx+c
得:
2=-
2
3
×22+2b+c
c=2

解得:
b=
4
3
c=2

故二次函数的解析式是y=-
2
3
x2+
4
3
x+2;

(3)当y=0,
则0=-
2
3
x2+
4
3
x+2,
解得:x1=-1,x2=3,
则二次函数与x轴的交点坐标为(-1,0)(3,0),
故不等式-
2
3
x2+bx+c≥0
的解集为:-1≤x≤3.
故答案为:-1≤x≤3.
点评:本题考查了二次函数,正方形的性质,待定系数法求函数解析式,根据正方形的性质求出点B、C的坐标是解题的关键,也是本题的突破口,本题在此类题目中比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案