精英家教网 > 初中数学 > 题目详情
2.如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为(  )
A.90°B.120°C.135°D.150°

分析 根据圆锥的底面半径得到圆锥的底面周长,也就是圆锥的侧面展开图的弧长,根据勾股定理得到圆锥的母线长,利用弧长公式可求得圆锥的侧面展开图中扇形的圆心角.

解答 解:∵圆锥的底面半径为3,
∴圆锥的底面周长为6π,
∵圆锥的高是6$\sqrt{2}$,
∴圆锥的母线长为$\sqrt{{3}^{2}+(6\sqrt{2})^{2}}$=9,
设扇形的圆心角为n°,
∴$\frac{nπ×9}{180}$=6π,
解得n=120.
答:圆锥的侧面展开图中扇形的圆心角为120°.
故选B.

点评 本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.如图1,在△ABC中,∠ACB=90°,AC=BC=2,D为AC中点,以点A为直角顶点作△DEF,使E点与A点重合,∠FED=90°,EF=BC,DF与AB交于点点G.
(1)求AG:BG的值;
(2)如图2,将△EFG沿射线AC方向向右平移至点E与点C重合时停止,设平移的距离为x,△ABC与△DEF重合部分的面积为y,请求出y与x的函数关系式;
(3)如图3,当平移停止时,将△DEF绕点E顺时针旋转一周,在旋转过程中△ACF与△BCF能否全等?若能,请直接写出旋转的角度α;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,点D在等边△ABC内,将△ABC绕点C顺时针旋转60°,得到△ACE,连接BE、DE,若∠AEB=45°,则∠DBE的度数为(  )
A.15°B.20°C.25°D.30°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图1,在平面直角坐标系中,抛物线y=-$\frac{1}{3}$x2+$\frac{2\sqrt{3}}{3}$x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.
(1)判断△ABC的形状,并说明理由;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD、FH.
(1)试判断BD与⊙O的位置关系,并说明理由;
(2)当AB=BE=1时,求⊙O的面积;
(3)在(2)的条件下,求HG•HB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在四边形ABCD中,AC平分∠BCD,AC⊥AB,E是BC的中点,AD⊥AE.
(1)求证:AC2=CD•BC;
(2)过E作EG⊥AB,并延长EG至点K,使EK=EB.
①若点H是点D关于AC的对称点,点F为AC的中点,求证:FH⊥GH;
②若∠B=30°,求证:四边形AKEC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y=$\frac{m}{x}$的图象都经过点A(2,-2).
(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,AB是⊙O的切线,B为切点,AC经过点O,与⊙O分别相交于点D,C.若∠ACB=30°,AB=$\sqrt{3}$,则阴影部分的面积是(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{π}{6}$C.$\frac{\sqrt{3}}{2}$-$\frac{π}{6}$D.$\frac{\sqrt{3}}{3}$-$\frac{π}{6}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.已知x1、x2是一元二次方程3x2=6-2x的两根,则x1-x1x2+x2的值是(  )
A.$-\frac{4}{3}$B.$\frac{8}{3}$C.$-\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案