精英家教网 > 初中数学 > 题目详情
两个长为4cm,宽为2cm的矩形,摆放在直线l上(如图(1)),CE=3cm,将矩形ABCD绕着点C顺时针旋转30°,将矩形EFGH绕着点E逆时针旋转30°(如图(2)),四边形MHND的面积是______cm2
∵矩形ABCD、矩形EFGH都是旋转30°,
∴∠NCE=∠NEC=90°-30°=60°,
∴△CEN是等边三角形,
∴CN=NE=CE=3cm,
∵两个矩形的长都是4cm,
∴HN=DN=4-3=1cm,
连接MN,
∵在Rt△MND和Rt△MNH中,
MN=MN
HN=DN

∴Rt△MND≌Rt△MNH(HL),
∴∠MND=∠MNH,
∵∠DNH=∠CNE=60°,
∴∠MND=∠MNH=30°,
在Rt△MND中,MD=DN•tan∠MND=1×tan30°=
3
3
cm,
∴△MND的面积=
1
2
×1×
3
3
=
3
6
cm2
∴S四边形MHND=2S△MND=2×
3
6
=
3
3
cm2
故答案为:
3
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,一等腰直角三角尺GEF的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.
(1)如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN满足的数量关系,并证明你的猜想;
(2)若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,DE是等腰直角三角形ABC的中位线,将△BED沿AB翻折使E落在F处,如图①,再将△ABC绕B点逆时针旋转α°(0<α<90°),连接AF,DC,如图②.
(1)观察猜想,∠AFB与∠BDC大小关系______(直接出正确结论);
(2)当α=30时,试判断△BDC的形状;
(3)在(2)的条件下,若DG=1,求DF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

先将一矩形ABCD置于直角坐标系中,使点A与坐标系的原点重合,边AB、AD分别落在x轴、y轴上(如左图),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图),若AB=8,BC=6,则右图中点C的坐标为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,△ABC≌△DEF,△DEF能否有△ABC通过一次旋转得到?若能,请用直尺和圆规画出旋转中心;若不能,请简要说明理由;
(2)如图2,△ABC≌△MNK,△MNK能否由△ABC通过一次旋转得到的?若能,请用直尺和圆规画出旋转中心;若不能,请简要说明理由.(两图均保留必要的作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图直角梯形ABCD中,ADBC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是(  )
A.1B.2C.3D.不能确定

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角梯形ABCD中,ADBC,AB⊥BC,AD=2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点C按逆时针方向旋转90°,得到△A′B′C,那么点A的对应点A′的坐标是(  )
A.(-3,3)B.(3,-3)C.(-2,4)D.(1,4)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC,对△ABC进行如下的图形变换(要求:不写画法,保留作图痕迹).
(1)如图①,以A为旋转中心,把△ABC逆时针旋转90°;
(2)如图②,画出△A′B′C′,使△ABC与△A′B′C′关于点O成中心对称.

查看答案和解析>>

同步练习册答案