精英家教网 > 初中数学 > 题目详情
5.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=46°.

分析 由AB=AC可求得∠ACB=∠B=67°,由三角形的内角和定理可求得∠A的度数,然后由平行线的性质可求得∠1的度数.

解答 解:∵AB=AC,
∴∠ACB=∠B=67°.
由三角形的内角和是180°可知;∠A=180°-67°×2=46°.
∵直线l1∥l2
∴∠1=∠A=46°.
故答案为:46°.

点评 本题主要考查的是等腰三角形的性质、平行线的性质、三角形的内角和定理,求得∠A的度数是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.已知a>b,下列四个不等式中不正确的是(  )
A.4a>4bB.-4a<-4bC.a+4>b+4D.a-4<b-4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.填空:如图,请你选择合适的条件填入空格中,使两个三角形全等.
①因为DF=DF,∠EDF=∠GDF,DE=DG,根据SAS,可知△DEF≌△DGF.
②因为DF=DF,∠EFD=∠GFD,,EF=FG,根据SAS,可知△DEF≌△DGF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.某高校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.

(1)这次被调查的同学共有1000名; 
(2)补全条形统计图;
(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平面直角坐标系中,四边形OABC是平行四边形,O(0,0),A(1,-2),B(3,1),反比例函数y=$\frac{k}{x}$的图象过C点,则k的值为6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知Rt△ABC中,∠C=90°,点O在AB上,以O为圆心OA为半径的圆与AC、AB分别交于点D、E,且∠A=∠CBD.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若AD:AO=8:5,BC=2,求BD的长和cos∠A.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.计算
(1)4+(-9)+16-(+81)
(2)(1-$\frac{1}{6}+\frac{3}{4}$)×(-48)
(3)(-5)×2+20÷(-4)
(4)(-10)2÷5×($-\frac{2}{5}$)
(5)$-1\frac{3}{4}-2\frac{1}{4}÷(-\frac{3}{2})×(-3)$
(6)-22+(-3)÷$\frac{1}{3}$-(-3)2÷(-1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)如图①,在?ABCD的形外分别作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,连AC、EF.在图中找一个与△FAE全等的三角形,并加以证明.
(2)如图②,以?ABCD的四条边为边,在其形外分别作正方形,连接EF、GH、IJ、KL.若图中阴影部分四个三角形的面积和为S,则?ABCD的面积为多少?(用含S的代数式表示结果)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.无论m为何值,直线y=2x+m和y=-x+5的图象交点不可能在第三象限.

查看答案和解析>>

同步练习册答案