精英家教网 > 初中数学 > 题目详情
已知,如图1,AB⊥BD于B,ED⊥BD于D,点C在直线BD上且与F重合,AB=FD,BC=DE
(1)请说明△ABC≌△FDE,并判断AC是否垂直FE?
(2)若将△ABC 沿BD方向平移至如图2的位置时,且其余条件不变,则AC是否垂直FE?请说明为什么?
精英家教网
分析:(1)根据全等三角形的判定SAS证△ABC≌△FDE,推出∠A=∠EFD,求出∠A+∠ACB=90°,推出∠ACE=90°即可;
(2)根据∠F=∠A,∠AMN=∠FNB,求出∠A+∠AMN=90°,根据三角形的内角和定理和垂直定义即可推出答案.
解答:解:(1)AC⊥EF.
理由是:∵AB⊥BD于B,ED⊥BD,
∴∠B=∠D=90°,
在△ABC和△FDE中
AB=DF
∠B=∠
BC=DE
D

∴△ABC≌△FDE,
∴∠A=∠EFD,
∵∠B=90°,
∴∠A+∠ACB=90°,
∴∠ACB+∠ECD=90°,
∴∠ACE=180°-90°=90°,
∴AC⊥CE,
即AC⊥FE.

(2)AC垂直FE,
理由是∵∠A=∠F(已证),∠ABC=∠ABF=90°,∠AMN=∠FMB,
∴∠F+∠FMB=90°,
∴∠A+∠AMN=90°,
∴∠ANM=180°-90°=90°,
∴AC⊥FE.
点评:本题主要考查对全等三角形的性质和判定,垂线,对顶角和邻补角,三角形的内角和定理等知识点的理解和掌握,推出∠A=∠F是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,DC∥AB,且DC=
12
AB,E为AB的中点.
(1)求证:△AED≌△EBC;
(2)观察图形,在不添加辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形(直接写出结果,不要求证明):
 

查看答案和解析>>

科目:初中数学 来源: 题型:

12、已知:如图,CD∥AB,∠A=40°,∠B=60°,那么∠1=
80
度,∠2=
60
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,线段AB=10cm,点C为线段AB上一点,BC=3cm,点D、点E分别为AC和AB的中点,则线段DE的长为
 
cm,请对你所得到的结论加以证明.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

17、已知:如图,CE⊥AB,DF⊥AB,AF=BE,CE=DF.
求证:(1)∠A=∠B;(2)AC∥DB.

查看答案和解析>>

同步练习册答案