精英家教网 > 初中数学 > 题目详情

【题目】为了解中学生的体能情况,某校抽取了50名八年级学生进行一分钟跳绳次数测试,将所得数据整理后,画出了频数分布直方图如下图所示已知图中从左到右前第一、第二、第三、第五小组的频率分别为0.04 , 0.12 0.4 O.28 ,根据已知条件解答下列问题:

(1)第四个小组的频率是多少? 你是怎样得到的?

(2)这五小组的频数各是多少?

(3)在这次跳绳中,跳绳次数的中位数落在第几小组内?

(4)将频数分布直方图补全,并分别写出各个小组的频数,并画出频数分布折线图.

【答案】答案见解析

【解析】试题分析:(1)用1减去其余四组的频率即可

2)利用频数=频率乘总数得到

3)中位数是第25个同学、第26个同学跳绳次数之和的一半

4)依数画图即可.

试题解析:(1)由1减去已知4个小组的频率之和得到结果第四个小组的频率=1﹣0.04+0.12+0.4+0.28=0.16

2)由频率=且知各小组的频率分别为0.040.120.40.160.28及总人数为50故有50×0.04=250×0.12=650×0.4=2050×0.16=850×0.28=14从而可知前5个小组的频数分别为2620814

3)由中位数应是第25个同学、第26个同学跳绳次数之和的一半.

由频数分布直方图可知25个同学、第26个同学跳绳次数均落在第三个小组内.

故而可知在这次测试中跳绳次数的中位数落在第三小组内

4)由于第四小组的频数为8第一小组频数为2故第四小组的小长方形的高应是第一小组小长方形的高的4倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=AC,点DBC的中点,点EAD.

(1)求证:BE=CE.

(2)如图,BE的延长线交AC于点F,BFAC,垂足为F,BAC=45,原题设其它条件不变,求证:△AEF≌△BCF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】世界杯期间,某娱乐场所举办消夏看球赛活动,需要对会场进行布置,计划在现场安装小彩灯和大彩灯.已知安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.

1)安装1个小彩灯和1个大彩灯各需多少元?

(2)若场地共需安装小彩灯和大彩灯300个,费用不超过4350元,则最多安装大彩灯多少个?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为等边三角形ABC内一点,连接OA,OB,OC,以OB为一边作∠OBM=60°,且BO=BM,连接CM,OM.

(1)判断AO与CM的大小关系并证明;

(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,如果直线l上依次有3个点ABC,那么

(1)在直线l上共有多少射线?多少条线段?

(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?

(3)如果在直线l上增加到n个点,则共有多少条射线?多少条线段?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图一次函数y= x+1的图象与x轴交于点A,与y轴交于点B;二次函数y= x2+bx+c的图象与一次函数y= x+1的图象交于B、C两点,与x轴交于D、E两点且D点坐标为(1,0).

(1)求二次函数的解析式;
(2)求四边形BDEC的面积S;
(3)在x轴上是否存在点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出所有的点P,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个形如六边形的点阵,它的中心是一个点,算做第一层,第二层每边两个点,第三层每边三个点,以此类推.

(1)填写下表

层数

1

2

3

4

5

该层对应的点数

1

6

12

(2)写出第n层对应的点数(n≥2);

(3)如果某层一共有72个点,请你求出对应的层数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市出租车计费方法如图所示,xkm)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:

1)出租车的起步价是多少元?当x3时,求y关于x的函数关系式.

2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为;抛物线的解析式为
(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?
(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

查看答案和解析>>

同步练习册答案