精英家教网 > 初中数学 > 题目详情

【题目】如图,甲、乙两座建筑物的水平距离,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为58°,求乙建筑物的高度.(参考数据:.结果取整数)

【答案】38m.

【解析】

AECDCD的延长线于点E,根据正切的定义分别求出CEDE,结合图形计算即可.

如图,AECDCD的延长线于点E,则四边形ABCE是矩形,

AE=BC=78m

RtACE,tanCAE=

CE=AEtan58°≈78×1.60=124.8(m)

RtADE,tanDAE=

DE=AEtan48°≈78×1.11=86.58(m)

CD=CEDE=124.886.58≈38(m)

答:乙建筑物的高度CD约为38m.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,P是对角线BD上的点,点E在AB上,且PA=PE.

(1)求证:PC=PE;

(2)求CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,试探究CPEABC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知BD是矩形ABCD的对角线.

(1)用直尺和圆规作线段BD的垂直平分线,分别交AD、BC于E、F(保留作图痕迹,不写作法和证明).

(2)连结BE,DF,问四边形BEDF是什么四边形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点分别是边上的点,点是一动点..

1)若点在线段上,且,如图1,则_____________

2)若点在边上运动,如图2所示,请猜想之间的关系,并说明理由;

3)若点运动到边的延长线上,如图3所示,则之间又有何关系?请直接写出结论,不用说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】新定义:[abc]为二次函数y=ax2+bx+ea≠0abc为实数)的图象数,如:y=-x2+2x+3图象数[-123]

1)二次函数y=x2-x-1图象数

2)若图象数[mm+1m+1]的二次函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):

1

2

3

4

5

3 km

10 km

4 km

3 km

-7 km

1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?

2)该驾驶员离公司距离最远是多少千米?

3)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠ACB90°AC8BC6CDAB于点D.点P从点A出发,以每秒1个单位长度的速度沿线段AB向终点B运动.在运动过程中,以点P为顶点作长为2,宽为1的矩形PQMN,其中PQ2PN1,点Q在点P的左侧,MNPQ的下方,且PQ总保持与AC垂直.设P的运动时间为t(秒)(t0),矩形PQMNACD的重叠部分图形面积为S(平方单位).

1)求线段CD的长;

2)当矩形PQMN与线段CD有公共点时,求t的取值范围;

3)当点P在线段AD上运动时,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,ACB=90°tanBAC=. D在边AC上(不与AC重合),连结BDFBD中点.

1)若过点DDEABE,连结CFEFCE,如图1.设,则k=

2)若将图1中的ADE绕点A旋转,使得DEB三点共线,点F仍为BD中点,如图2所示.求证:BE-DE=2CF

3)若BC=6,点D在边AC的三等分点处,将线段AD绕点A旋转,点F始终为BD中点,求线段CF长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一条24cm的细绳围成一个等腰三角形。

1)如果腰长是底边的2倍,那么各边的长是多少?

2)能围成有一边长为4cm的等腰三角形吗?为什么?

查看答案和解析>>

同步练习册答案