精英家教网 > 初中数学 > 题目详情
已知二次函数y=x2-2x+k-1,当x取一切实数时,函数值y恒为正值,则k的取值范围是
 
考点:抛物线与x轴的交点
专题:
分析:由二次函数y=-x2+2x-k+1,当x取一切实数时,函数值y恒为负值,即可得△=22-4×(-1)×(-k+1)<0,继而求得答案.
解答:解:∵y=x2-2x+k-1,当x取一切实数时,函数值y恒为正值,
∴△=(-2)2-4×1×(k-1)<0,
解得:k>2,
∴k的取值范围是k>2.
故答案为:k>2.
点评:此题考查了抛物线与x轴的交点问题.此题难度不大,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系.△=b2-4ac决定抛物线与x轴的交点个数.△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知方程组
mx+ay=3
ax-ny=-2
的解是
x=-1
y=-4
,则m、n之间的数量关系是(  )
A、m-16n=5
B、m-16n=11
C、m+16n=-11
D、m+16n=-5

查看答案和解析>>

科目:初中数学 来源: 题型:

从全班60名同学中随意选取5名同学参加公益活动,你怎样用计算器来完成这项工作?如果没有计算器还可以怎样做?若你是班上一名学生,你被选中的可能性有多大?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图放置,使点E在BC上,取DF的中点G,连结EG、CG.
(1)请添加一条辅助线,构造一个和△FEG全等的三角形,并证明它们全等.
(2)探索EG、CG的数量关系和位置关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.
(1)求证:Rt△ABE≌Rt△CBF;
(2)若∠CAE=35°,求∠ACF度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.如图1,易证△CAD≌△BCE,则线段AD、DE、BE之间的关系为BE=AD+DE.
(1)将直线CD绕点C旋转,使得点D、E重合得到图2,请你直接写出线段AD与BE的关系.
(2)将直线CD绕点C继续旋转,得到图3,请你写出线段AD、DE、BE的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC是等边三角形,点D、E分别在AC、BC上,且CD=BE,则∠AFB=
 
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知D、E分别是△ABC中AB、AC边上的点,DE∥BC且
AD
AB
=
1
3
,△ADE的周长2,则△ABC的周长为(  )
A、4B、6C、8D、18

查看答案和解析>>

科目:初中数学 来源: 题型:

比较大小:
39
 
3 (填=,>或<号).

查看答案和解析>>

同步练习册答案